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We present an extended formulation of a non-linear continuum visco-elastic damage

rheology that accounts for non-local damage accumulation, dynamic fracturing, and

transition from solid to granular state in the slip zone. Generalizing the standard

Hookean strain energy, the model has three additional energy terms: a non-analytic

second-order function of the first and second strain invariants, a term proportional to

the strain rate, and a term proportional to the spatial gradient of a damage state

variable. The first term leads to non-linear stress–strain relation, with abrupt changes in

the effective elastic moduli upon stress reversal from compression to tension along with

damage- and stress-induced anisotropy. The second term gives rise to Kelvin–Voigt

viscous relaxation. The resulting formulation combines Kelvin–Voigt and Maxwell

visco-elasticity, accounting for both long-term relaxation and short-term dissipation

stabilizing the damage evolution. The third term produces a finite length scale for

damage diffusion that eliminates the unrealistic singular localization of the local

damage model. An equation for damage evolution derived from basic thermodynamic

considerations quantifies the kinetics of damage under different conditions, including

quasi-static and dynamic degradation and gradual healing. In the vicinity of macro-

scopic failure, at a critical level of damage associated with loss of convexity of the

energy function, the formulation includes a transition from damaged solid to granular

flow dynamics. The formulation provides a framework for studying multiple aspects of

brittle deformation, including potential feedback mechanisms between evolving elastic

and related properties of the slip localization zone and subsequent rupture behavior.

Several features of the model including existence of finite localization width and

transition from slow to rapid dynamic slip are illustrated using numerical simulations.

The analysis clarifies the dependency of some damage parameters on basic properties of

the examined domain and boundary conditions, and the conditions for which simpler

local damage descriptions are appropriate.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Laboratory investigations indicate that fracturing of rocks and other brittle materials cannot generally be described in
terms of single crack propagation in the framework of linear elastic fracture mechanics (e.g., Yukutake, 1989; Lockner
et al., 1992; Nemat-Nasser and Hori, 1999; Paterson and Wong, 2005). The size and geometry of a region with intense
distributed cracking, referred to as damage zone or process zone, control the trajectory and growth rate of quasi-static
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macro-cracks (e.g., Bazant and Cedolin, 1991; Zietlow and Labuz, 1998). Experimental analyses of acoustic emission (AE)
during tri-axial loading tests demonstrate different stages of the intensity and spatial distributions of internal fractures
(e.g., Lockner et al., 1992; Zang et al., 2000). At relatively low stresses, AE and fracturing occur over most of the sample. At
relatively high stresses just before the peak stress, AE is localized in a relatively narrow damage zone. Finally, dynamic
fracturing occurs along a narrow fault zone. These laboratory studies highlight the importance of accounting for the
distribution of damage evolution in analysis of rock fracturing.

Damage rheology models have been applied extensively to model fracturing processes in engineering materials and
rocks (e.g., Kachanov, 1986; Rabotnov, 1988; Krajcinovic, 1996; Lemaitre, 1996; Allix and Hild, 2002). Micromechanical
damage models based on sets of micro-cracks satisfying each linear elastic fracture mechanics (e.g., Ashby and Sammis,
1990; Nemat-Nasser and Hori, 1999; Deshpande and Evans, 2008) provide physically based description of material
damage. However, their application for constitutive laws and damage behavior of rocks is limited since most of the models
are formulated based on deformation and growth of non-interacting penny-shaped micro-cracks. These simplifications
may induce deviations from the actual state and evolution of damage especially close to failure at high microcrack
concentrations. Continuum damage frameworks attempt to model the effective macroscopic properties associated with
large populations of internal flaws without prescribing the micromechanics governing the behavior of individual cracks.
The continuum models connect the evolution of elastic moduli with changes of crack density through a non-dimensional
intensive damage variable characterizing material volumes large enough to allow smooth description of the distribution of
internal flaws (micro-cracks in laboratory specimen).

Rabotnov (1988) related the damage variable to a reduction of the effective cross-section area that supports the load.
Fiber-bundle models of damage (e.g., Newman and Phoenix, 2001) share that physical concept with cracks represented by
torn fibers. Lyakhovsky and Myasnikov (1984, 1985), Lyakhovsky et al. (1997a, 1997b), Hamiel et al. (2004), and
Lyakhovsky and Ben-Zion (2008) developed a thermodynamically-based non-linear continuum visco-elastic damage
model for evolving elastic properties of rocks. Their model accounts for the following general aspects of brittle rock
deformation: (1) non-linear elasticity that connects the effective elastic moduli to a damage variable and loading
conditions. (2) Evolution of the damage state variable as a function of the ongoing deformation and gradual conversion of
elastic strain to permanent inelastic deformation during material degradation. (3) Macroscopic brittle instability at a
critical level of damage and related rapid conversion of elastic strain to permanent inelastic strain. This approach was
adopted by Ben-Zion et al. (1999), Lyakhovsky (2001), Ben-Zion and Lyakhovsky (2002, 2006), and Lyakhovsky and Ben-
Zion (2009) to study the evolution of geometrical and material properties of crustal fault zones, along with the evolution of
various types of seismicity patterns.

The forgoing studies used quasi-static numerical simulations combined with selective analytical results. The obtained results
were shown to be consistent overall with geological and seismological observations, as well as theoretical results associated with
other frameworks (e.g., Ben-Zion, 2008). However, two simplifications in the previous formulation of the non-linear visco-elastic
continuum damage rheology limit the model utility for studies of detailed irreversible deformation. These are (a) the local

dependency of the energy function and related variables on damage, which leads for ranges of rheological parameters and
boundary conditions to a singular localization (e.g., Lyakhovsky et al., 1997a; Lyakhovsky, 2001), and (b) the abrupt drop of the
deviatoric stress during brittle failure, without any length or time scales, which renders the model inherently discrete in the sense
of Rice (1993) and Ben-Zion and Rice (1995). The goal of the present paper is to provide a more detailed treatment of the energy
function and reduction of the deviatoric stress during instabilities that will allow us to describe better the evolution and effects of
rock damage in close spatio-temporal proximity to brittle failure events, along with aspects of wave propagation and dynamic
rupture in damaged media.

Strong micro-crack interaction in a highly damaged area prior to total failure may be accounted for by adopting a non-
local model, in which the constitutive law at a given position involves weighted averages of a state variable (or a
thermodynamic force) over a certain neighborhood. Such a concept of non-local continuum was first introduced to model
small-scale effects and heterogeneities in elastic solids (e.g., Eringen, 1966; Kroner, 1968; Bazant, 1991). Nonlocal theories,
either of integral or gradient type (e.g., Bazant and Jirasek, 2002), are capable of reproducing size effects (e.g., Bazant,
2005). An integral-type nonlocal framework is a model in which the constitutive law at a point of a continuum involves
weighted averages of a state variable (or the associated thermodynamic force) over a certain neighborhood of that point
(e.g., Marotti de Sciarra, 2009). A gradient-type model takes non-locality into account by enriching the local constitutive
relations with the first or higher gradients of some state variables or thermodynamic forces. Myasnikov et al. (1990)
presented a formulation for energy and entropy balance equation for a gradient-type model. Adopting the gradient-type
approach one should assume that the free energy of the damaged material is not only a function of the strain tensor and
damage variable, but also of the strain rate tensor and gradient of damage variable. Modeling the dynamic evolution of
strength near brittle instabilities of damaged solids can be done by recognizing that at some damage level materials
become effectively granular, and that near brittle instability a damaged material may be viewed as consisting of a mixture
of solid and granular phases.

The rest of the paper is organized as follows. In Section 2 we develop a generalized version of the non-linear visco-
elastic continuum damage rheology with non-local dependency on damage and improved treatment of dynamic failure
phenomena. In Section 3 we illustrate the results with several analytical solutions and numerical simulations. The results
are summarized and discussed in Section 4. Details related to the thermodynamic formulation of the model and wave
attenuation in the damage model are provides in two appendixes.
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2. Theory

2.1. General thermodynamic formulation

To account for dynamic rupture process, we generalize the results of Lyakhovsky et al. (1997a) for damage evolution
during irreversible brittle deformation. We follow the approach of irreversible thermodynamics (e.g., Onsager, 1931;
Prigogine, 1955; Biot, 1955; Truesdell and Noll, 2004), which was successfully applied to kinetics of chemical reactions and
phase transitions (e.g., Fitts, 1962; de Groot and Mazur, 1962) and served as a basis for variational methods of continuous
media models (e.g., Sedov, 1968; Malvern, 1969; Berdichevsky, 2009).

The constitutive behavior of the material and flow rules controlling the kinetics of related irreversible processes is
entirely defined by specification of two potentials. The first is the free energy, F, and the second is the dissipation function
or local entropy production, G. The maximum entropy production principle dictates the flow rules for the kinetics of the
irreversible processes. A visco-elastic damage model should account for local entropy production terms associated with
different irreversible dissipative processes including heat transport, viscous stress relaxation and damage evolution
(Appendix A). Assuming that these different physical processes are independent we maximize each term independently.
Following Onsager (1931), who theoretically generalized the empirical laws of Fourier, Ohm, Fick, and Navier (see review
by Martyushev and Seleznev, 2006), we represent the specific local entropy production as a product of thermodynamic
fluxes and thermodynamic forces. For small deviations from equilibrium, the Onzager principle can be obtained from the
maximum entropy production principle, the maximum dissipation rate of mechanical energy, or the von Mises principle
(e.g., Ziegler, 1983; Martyushev and Seleznev, 2006). Below we first define the specific form of the energy function and
then formulate the kinetic relations for damage evolution based on the Onsager principle.

The free energy of a solid in the local damage model of Lyakhovsky et al. (1997a) is assumed to be a function only of the
local state variables, which are the temperature T, the elastic strain tensor eij ¼ gij�g0

ij (the difference between the total
strain tensor gij and the irreversible strain tensor g0

ij), and the damage variable a

F ¼ FðT ,eij,aÞ: ð1Þ

We extend the local constitutive relation (1) to a gradient-type non-local model by adding dependencies of F on the
gradient of the damage state variable, ria, as well as on the strain rate tensor, eij ¼ dgij=dt

F ¼ FðT ,eij,eij,a,riaÞ: ð2Þ

The strain rate tensor as an additional thermodynamic state variable gives rise to the Jefferys model, which combines
Maxwell and Kelvin–Voigt visco-elasticity (e.g., Rabotnov, 1988; Christensen, 2003). The spatial derivative of the damage
state variable allows the formulation to account for strong interaction of internal flaws in a highly damaged region prior to
total macroscopic failure.

The simplest extension of the previous local model discussed in Lyakhovsky et al. (1997a) to a gradient-type non-local
isotropic model involves incorporating quadratic terms of the first-order time derivatives of strain and damage, along with
the gradient of the damage state variable

F ¼
1

r
l
2

I2
1þmI2�gI1

ffiffiffiffi
I2

p
þZeijeijþ

k
2
riaUria

� �
, ð3Þ

where l and m are Lame constants, I1 ¼ eijdij and I2 ¼ eijeij are the first and second invariants of the strain tensor eij, g is an
additional modulus of a damaged solid, Z is Kelvin–Voigt viscosity, and the additional dimensional coefficient k
characterizes the length scale of the non-local formulation.

The first two terms of (3) give the classical strain potential of linear elasticity (e.g., Malvern, 1969). The third term,
which couples volumetric and shear strain, may be derived using the effective medium theory of Budiansky and O’Connell
(1976) for non-interacting cracks that dilate and contract in response to tension and compression (Lyakhovsky et al.,
1997b), or by expanding the strain energy potential as a general second-order function of I1 and I2 and eliminating terms
that are either singular or not consistent with dilation during brittle deformation under shear loading (Ben-Zion and
Lyakhovsky, 2006; Hamiel et al., in press). The non-analytic second order term with the modulus g leads to non-linear
elasticity for damaged material (aa0, ga0) even under infinitesimal strain. This term also produces gradual changes in the
effective elastic moduli under non-proportional loading which become abrupt when the loading reverses from
compression to tension. In addition to producing material dilation under shear loading, the damage model with energy
function (3) can explain well various deformation, acoustic emission and wave propagation features observed in laboratory
fracturing experiments with stiff rocks (e.g., Lyakhovsky et al., 1997b; Hamiel et al., 2005, 2009; Lyakhovsky and Ben-Zion,
2009; Lyakhovsky et al., 2009; Hamiel et al., in press).

The functional relation between the free energy (3) and the damage state variable is established by making the elastic
moduli functions of a. With the current level of experimental constraints, some simple assumptions should be made.
Agnon and Lyakhovsky (1995) assumed that the moduli m and g are linear functions of a and that l is constant. Hamiel
et al. (2004) reviewed this assumption and demonstrated that a power-law relation g(a) improves the quality of fitting
between laboratory measured stress–strain curves and model predictions. This power-law relation also leads to a
transition between stable and unstable damage evolution in rocks (Hamiel et al., 2004). For mathematical simplicity we
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adopt here the linear relations

l¼ l0,

m¼ m0�amr ,

g¼ agr , ð4Þ

where l0, m0, and g¼0 are the elastic moduli of a damage-free material (a¼0), and l¼l0, m¼m0�mr, and g¼gr give the
values of the moduli at maximum damage level (a¼1). During damage accumulation the modulus g increases and the
shear modulus m decreases, corresponding to material evolution from linear elastic solid (a¼0) to strongly non-linear
behavior and macroscopic brittle instability at some critical damage level (ac). The conditions for the macroscopic
instability will be discussed in the next section.

Taking the derivative of the energy form (3) with respect to the strain ((a14), Appendix A) leads to the following stress–
strain relation:

sij ¼ ðlI1�g
ffiffiffiffi
I2

p
Þdijþ 2m�g I1ffiffiffiffi

I2

p
 !

eijþZeij�kriaUrja: ð5Þ

The obtained relation includes three different types of terms. The first two terms relate the stress to the elastic strain as in the
local model. The third term is a usual extension of elasticity to Kelvin–Voigt visco-elasticity. This basic model is commonly used in
seismology to describe observed attenuation or damping of seismic waves (e.g., Aki and Richards, 2002). The attenuation
coefficient of propagating waves is proportional to the Kelvin–Voigt viscosity, or the seismic quality factor Q ¼ rv2=Zo with v

and o denoting elastic wave velocity and frequency. The physical mechanism of wave attenuation in damaged rocks, and general
relation between crack density or damage variable and the attenuation coefficient, are discussed further in Appendix B. The last
term in (5) defines the ‘‘structural stresses’’ associated with the heterogeneous damage distribution.

Using the energy Eq. (3), the specific local entropy production associated with the viscous deformation ((a10), Appendix A)
has the form:

GV ¼
1

Tr lI1�g
ffiffiffiffi
I2

p� �
dijþ 2m�g I1ffiffiffiffi

I2

p
 !

eijþZeij

" #
dgð0Þij

dt
�

Z
Tr eij

deij

dt
: ð6Þ

Relation (6) includes a Maxwell type shear heating term associated with gradual accumulation of irreversible
deformation gð0Þij , and a Kelvin–Voigt type term describing entropy production proportional to the time-derivative of the
strain rate tensor. The linear proportionality between the thermodynamic force (dgð0Þij =dt) and thermodynamic flux leads
to a constant linear Newtonian viscosity. Following Maxwell visco-elastic rheology, the irreversible deformation may be
represented as the sum of strain components associated with different deformation mechanisms. These may include
dislocation creep, solid state diffusion, solution-diffusion-precipitation processes and other mechanisms (e.g., Kohlstedt
et al., 1995; Regenauer-Lieb and Yuen, 2003). A power-law rheology is widely accepted for expressing the strain rate of
dislocation flow (e.g., Weertman, 1978). A deformation mechanism associated with macroscopic material failure and
transition to a granular flow will be discussed in Section 2.3.

Analysis of observed stress–strain curves and acoustic emission from laboratory experiments with granites and
sandstones led Hamiel et al. (2004) to incorporate in the model a gradual damage-related Maxwell type inelastic
deformation (creep) before the occurrence of macroscopic brittle failure. This inelastic strain gð0Þij begins to accumulate
with the onset of acoustic emission and the rate of its accumulation is assumed to be proportional to the rate of damage
increase

dgð0Þij

dt
¼

CV
da
dt s

d
ij

da
dt 40

0 da
dt r0

,

8<
: ð7Þ

where Cv is a material constant and sij
d

is the deviatoric stress tensor. The effective compliance or inverse of viscosity (Cvda/dt)
relates the deviatoric stress to the rate of irreversible strain accumulation. This model assumption implies that the total
irreversible strain accumulated during loading should be proportional to the overall damage increase in the deforming rock
sample.

Using the energy Eq. (3) combined with (4) into the local entropy production associated with the damage evolution
term (a11) is

GD ¼
1

Tr mrI2þgrI1

ffiffiffiffi
I2

p
�
@Z
@a eijeijþkr

2a
� �

da
dt
: ð8Þ

Following Onzager (1931) principle, the linear relation between the thermodynamic force and flux leads to damage
kinetics equation of the form:

da
dt
¼ C mrI2þgrI1

ffiffiffiffi
I2

p
�
@Z
@a eijeijþkr

2a
� �

, ð9Þ

where C is a positive constant or function of state variables. Eq. (9) is a second order parabolic (diffusion) equation with
source terms. In the quasi-static case of gradual uniform damage evolution, associated with slowly changing elastic strains,
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the second order spatial derivatives of the damage and the time derivative of the elastic strain may be neglected. With
these simplifications, the equation for the kinetics of damage evolution is reduced to the equation derived by Lyakhovsky
et al. (1997a) for the local damage rheology model:

da
dt
¼

CdI2ðx�x0Þ, for xZx0

C1 exp a
C2

� �
I2ðx�x0Þ, for xox0

,

8<
: ð10Þ

where x¼ I1=
ffiffiffiffi
I2

p
is referred to as the strain invariants ratio. The parameter x0 ¼�mr=gr separates states of deformation

involving material degradation and healing, associated with positive and negative evolution of damage, respectively. The
parameter Cd ¼ Cgr is a damage-rate constant for material degradation and it defines the timescale for the occurrence of
macroscopic brittle failure following the onset of positive damage evolution at x¼x0. The rate of damage recovery for
xox0 is assumed in (10) to depend exponentially on a. Lyakhovsky et al. (2005) showed that the local damage model
reproduces the main phenomenological features of the rate- and state-dependent friction, and constrained the healing
parameters C1, C2 by comparing the model calculations with empiric parameters of the frictional sliding (e.g., Dieterich,
1972, 1979; Marone, 1998).

2.2. Macroscopic failure

Two mathematically different conditions can be utilized for analyzing the macroscopic stability of solid under
deformation. The first is convexity of the elastic strain energy, which is necessary for the existence of a unique solution of
the static problem (e.g., Ekland and Temam, 1976). This criterion was adopted and expanded by Hill (1998), Truesdell and
Noll (2004), and others in the framework of plasticity theory. The second is a change of the elasto-dynamic equation to
ellipticity (e.g., Rudnicki and Rice, 1975). These two conditions are not always identical, especially for non-linear elasticity
(e.g., Schreyer and Neilsen, 1996a, b). The first condition is a stronger one and convexity may be lost prior to the transition
to ellipticity.

The condition of convexity of the elastic strain energy implies positivity of all the eigenvalues of the Hessian matrix
(@2U/@eij@ekl), providing a canonical base in the mathematical space of elastic deformations (e11, e22, e33, e12, e13, e23). The
size of the Hessian matrix may be reduced to 3�3 components by rotating the coordinate system to the principal strain
axes. In this case the matrix (Table 1) has three eigenvalues given in Lyakhovsky et al. (1997a). The conditions for the
positivity of the eigenvalue are:

2m�gx40, ð11Þ

ð2m�gxÞ2þð2m�gxÞð3l�gxÞþðlgx�g2Þð3�x2
Þ40: ð12Þ

Condition (11) coincides with the condition for the positivity of the shear wave velocity, Vs40, where V2
s ¼ ðm�gx=2Þ=r

(Hamiel et al., 2009). In this case, the convexity condition (11) coincides with the condition of the change of the elasto-
dynamic equation to ellipticity (Fig. 1). This condition is dominant at relatively high positive values of x typical for tensile
stresses. At lower x values, typical for fracturing under confining pressures, condition (12) becomes dominant and is
stronger than the ellipticity condition. In addition to the limit associated with positivity of the shear wave velocity, Vs¼0,
Fig. 1 also shows a corresponding limit for positivity of a quasi-shear anisotropic wave, Vqs¼0, which is the slowest wave
for low x-values (Hamiel et al., 2009).

Macroscopic stability of a highly damaged solid with a¼1 can exist only if the strain invariants ratio is below its critical
value, xox0 (Fig. 1). This stability condition formulated in terms of strain invariants is equivalent to the Schleicher
yielding condition of the elasto-plastic model (Myasnikov and Oleinikov, 1991), which generalizes the von Mises yielding
condition by making the critical stress value an arbitrary function of the mean stress (e.g., Hill, 1998). Extending such
analyses, Lyakhovsky and Ben-Zion (2008) obtained a yielding condition for a damaged solid with a¼acr(x). These
derivations provide connections between the stability condition (12) and internal friction at the critical state, a¼acr(x),
and enable using the associated plasticity law of Drucker (1949) to solve quasi-static problems with the damage model.
Fig. 1 (red line) shows that the lowest friction value (�0.25) is obtained for x¼ x0 and a¼1. The friction at critical level of
Table 1
Hessian matrix (@2U/@eij@ekl).

e11 e22 e33 e12 e13 e23

e11 lþ2m�gxþgxe2
1�2ge1 l�g(e1þe2)þgxe1e2 l�g(e1þe3)þgxe1e3 0 0 0

e22 l�g(e1þe2)þgxe1e2 lþ2m�gxþgxe2
2�2ge2 l�g(e2þe3)þgxe2e3 0 0 0

e33 l�g(e1þe3)þgxe1e3 l�g(e2þe3)þgxe2e3 lþ2m�gxþgxe2
3�2ge3 0 0 0

e12 0 0 0 2m�gx 0 0

e13 0 0 0 0 2m�gx 0

e23 0 0 0 0 0 2m�gx

Here ei ¼ ei=
ffiffiffiffi
I2

p
is a normalized value of the deformation along the principal axis ‘‘i’’.
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damage, a¼acr(x), gradually increases with x under conditions where (12) is dominant. At higher x values at least one of
the principal stress values becomes tensile; in this case the friction coefficient becomes irrelevant.

2.3. A transition to granular flow

In a simplified 1-D case, our model predicts that the effective elastic modulus for tension degrades significantly faster
than the compressive one. At critical damage level the tensile modulus vanishes while the compressive modulus remains
finite. This resembles the mechanical behavior of a cohesionless granular material where tensile stresses do not exist.
Based on this analogy, Myasnikov and Oleinikov (1991) and Revugenko (2006) discussed a mathematical model of
granular material as a limit case of media that react differently to tension and compression. Ben-Zion et al. (in press)
proposed a mean field framework that can be used to study transitions between solid and granular states of material, and
related different dynamic regimes, in terms of 3 tuning parameters: dynamic strength change during failure, the void
fraction in granular materials and damaged solids, and the ratio of shear rate over healing rate. All these parameters are
related directly or indirectly to cohesion. Following these ideas we suggest that the critical value of the damage state
variable acr(x), corresponding to macroscopic brittle instability, is associated with a phase transition from a damaged solid
to a granular material in the process zone around the generated macroscopic failure zone. In the vicinity of the critical
state a¼acr(x), a mixture zone similar to a mushy region discussed in the context of the Stefan problem (e.g., Crank, 1987)
is expected. Below we present a brief discussion of granular mechanics and suggest a simplified description for the
transitional zone between solid and granular states.

Starting with pioneering works by von Mises and von Karman, several models involving yield conditions and flow rules
have attempted to account for the observed solid- and fluid-like phenomenology of granular material (e.g., Jaeger et al.,
1996; Liu and Nagel, 2001). Numerous models can reproduce basic features of quasi-static solid-like deformation in dense
randomly packed granular media (e.g., Rao and Nott, 2008). The analysis of rapid granular flow (granular gas) with short
duration interaction between particles is usually based on kinetic theory utilizing the Chapman–Enskog approach (e.g.,
Chapman and Cowling, 1964). A model that combines frictional and kinetic theories was proposed by Savage (1998). The
model starts with a yield condition plus associated flow rule and accounts for fluctuations in the rate of the deformation
tensor at any location about the mean value. The average stress tensor is determined by averaging over the entire range of
deformation assuming that the strain rate fluctuations follow a Gaussian distribution. This assumption leads to Newtonian
constitutive relations, with the bulk and shear viscosities related to a ‘‘granular temperature’’ which is a measure of the
specific kinetic energy of the transitional velocity fluctuations (e.g., Savage, 1998). The transition to the solid-like phase in
the dense regime where the granular material barely flows has been the subject of considerable research. Many recent
studies suggested that ‘‘jamming transitions’’ may be used to classify behavior of a wide variety of physical systems,
including critical slowdown in the granular flow dynamics before transition from fluid-like to solid-like behavior (e.g., Liu and
Nagel, 1998; D’Anna and Gremaud, 2001; Trappe et al., 2001; Song et al., 2008; Chandelier and Dauchot, 2010).

Edwards and co-workers (Edwards and Oakeshott, 1989; Mehta and Edwards, 1989; Edwards, 1990, 2005; Makse et al.,
2004) proposed a thermodynamic description of dense granular material consisting of a large number of dissipative
particles that are massive enough so that their potential energy is orders of magnitude larger than their thermal energy. A
central postulate of the Edwards theory is the existence of a new state variable called compactivity w�1 ¼ @S=@V , instead of
the temperature T�1 ¼ @S=@E in classical statistical mechanics (e.g., Landau and Lifshitz, 1980). The entropy is defined in
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analogy to classical statistical mechanics as SðV ,NÞ ¼ lE lnðOÞ, where O is the number of mechanically stable configurations
of N particles in a fixed volume V, and lE is the equivalent of the Bolzmann constant. Most formulas of the Edwards theory,
including the Boltzmann distribution of the states of a system, are analogous to those of classical statistical mechanics,
with some changes of variables. A number of recent theoretical and experimental studies provided evidence supporting
the theory (e.g., Makse and Kurchan, 2002; Coniglio et al., 2004; Schroter et al., 2005; Metzger and Donahue, 2005; Briscoe
et al., 2008; McNamura et al., 2009).

The Edwards theory, like classical statistical mechanics with the Boltzmann distribution of the states of a system, does
not reproduce phase transitions which require more complex equation of state and another statistical distribution. For
a system of identical particles, the average number of particles, ni, in a state i, is given by the Fermi–Dirac distribution
(e.g., Landau and Lifshitz, 1980)

ni ¼
1

expðEi�E0=kTÞþ1
: ð13Þ

where k is the Boltzmann constant, T is the absolute temperature, Ei is the energy of state i, and E0 is the energy at the
critical state or chemical potential in a classical system. It is reasonable to assume that similar statistics may apply to
granular material in the vicinity of the transition from a fluid-like to a solid-like state. Following ideas of the Edwards
theory, the equivalent of the Bolzmann constant multiplied by the compactivity, wlE, should replace kT in (13), and an
intrinsic state function should replace the energy. We therefore assume that the probability P that a material element
(particle) of the mixture zone (mushy region) in the vicinity of the critical state, a¼acr(x), is in a solid state has a functional
form similar to (13)

PðaÞ ¼ 1

expða�acrðxÞ=bÞþ1
: ð14Þ

The probability of being in a granular state is given by (1�P) and the b-value defines the width of the transitional
region. For b-0, P(a) approaches the Heaviside (step) function that abruptly changes its value from zero to one. In this
case the transition from the solid to granular state is abrupt without any mushy region. While these results should be
followed by more detailed analyses, they provide general guidelines for describing the deformation processes near the
unstable regime a-acr(x).

3. Analytical and numerical results

We now present four different model solutions demonstrating the main features of the formulated model. We start
with quasi-static damage evolution under constant stress, which is the simplest model demonstrating the Kelvin–Voigt
damage-dependent retardation of instability. The second solution emphasizes the non-local features of the model by
analyzing damage localization under constant shear strain. Next, we address damage diffusion and simulate size effect in
mode-I crack driven by remote tension. These solutions are obtained for the ‘‘elastic’’ damage model that ignores gradual
accumulation of the irreversible strain (Maxwell terms). In this case the strain rate tensor is equal to the time derivative of
the elastic strain tensor ðeij ¼ deij=dtÞ. The complete model formulation is applied in the last case dealing with deformation
and damage evolution of the material in a narrow zone subjected to constant compacting strain and increasing shear strain
due to motion of outer elastic blocks.

3.1. Damage evolution in a uniform block under constant loading

In a 1-D case the effective elastic modulus G degrades proportionally to the damage increase, GðaÞ ¼ G0ð1�aÞ, and the
stress–strain constitutive relation is

s¼ G0ð1�aÞeþZðaÞ
de
dt
: ð15Þ

Neglecting the gradient damage terms for a homogeneous damage evolution, the equation for the damage evolution
reduces to

da
dt
¼ Cde2�

Cd

G0

@Z
@a e

de
dt
: ð16Þ

Assuming constant stress s and neglecting the Kelvin–Voigt viscosity terms, Z(a)¼0, leads to a power law damage
accumulation previously discussed by Ben-Zion and Lyakhovsky (2002) and Turcotte et al. (2003)

aðtÞ ¼ 1� 1�3
Cds2

G2
0

t

 !1=3

: ð17Þ
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This solution predicts acceleration of seismic energy release prior to the occurrence of strong brittle events, with
time-to-failure, tf, given by

tf ¼
G2

0

3Cds2
: ð18Þ

The rate of damage growth increases monotonically and goes to infinity toward the macroscopic failure, da=dt-1 for
t-tf and a-1.

Following relation (B2) between the attenuation coefficient and the observed damage in rock samples, and recalling the
proportionality between attenuation of waves and Kelvin–Voigt viscosity, we prescribe Z(a) as

ZðaÞ ¼ Z1þ
Z2

acr�a
, ð19Þ

where the critical level of damage in the 1-D case is acr¼1. Substituting (19) into (15) and (16), leads to the following
system of two coupled first order differential equations for strain and damage evolution:

de
dt
¼ ð1�aÞ s�G0ð1�aÞe

Z1ð1�aÞþZ2

, ð20Þ

and

dð1�aÞ2

dt
¼�2Cde2ð1�aÞþ2

Cd

E0
Z2e

s�G0ð1�aÞe
Z1ð1�aÞþZ2

: ð21Þ

In contrast to (17), the solution of Eqs. (21) and (22) predicts that the strain rate and the rate of damage accumulation
go to zero (de=dt-0, da=dt-0) toward the macroscopic failure (a-1). The analytical asymptotic solution for infinite time
(t-1) has the following form:

eðtÞ ¼ a
ffiffi
t
p

aðtÞ ¼ 1�
bffiffi
t
p

,
ð22Þ

with coefficients a and b given by

a¼
2sb

Z2þ2G0b2
,

b¼

ffiffiffiffiffiffiffiffiffi
1

2

Z2

G0

s
: ð23Þ

This solution is obtained by neglecting higher order terms of time (1=
ffiffi
t
p

, 1=t, etc.) in the asymptotic expansion for t-1. The
asymptotic solution (22) for the damage and strain evolution means that it takes an infinite time to achieve a static macroscopic
failure condition (a¼ 1). Only in the case of Z¼ const:, the rate of damage accumulation gradually increases, leading to
macroscopic failure with a finite time-to-failure. In the more realistic case accounting for the damage-related increase of the
Kelvin–Voigt viscosity parameter, the rate of damage accumulation increases up to some maximum value and then decreases.

Fig. 2 shows the damage evolution obtained by numerical solutions of (20, 21) together with the analytical solution (17)
for Z¼ 0 (red line). Time in the figure is normalized to the time to failure tf (18). The simulation starts with a damage free
material (a¼0). The constant stress condition corresponds to initial strain of eð0Þ ¼ s=G0 ¼ 10�2; the value of Z1 in (19) is
equal 10�2Go corresponding to a quality factor Q¼102 for intact rock and 1 Hz frequency. The blue, green, and purple lines
correspond to Z2¼10Z1, 30Z1, and 50Z1, respectively. The numerical solutions follow the analytical curve until the vicinity
of the failure at time t¼tf. The differences between the analytical solution without damping and numerical solutions with
damping terms are clearly seen in the inset figure. Instead of reaching the critical value of damage (a¼1), as the analytical
(red) line does, the solutions with damping become strongly bent and the damage remains below one for infinite time. This
behavior is predicted by the asymptotic analytical solution (22) and shown in Fig. 3 (dashed line) together with the
numerical solution. The numerical solution approaches the asymptotic value very fast and the solutions become almost
identical to (22) already at time t�2 tf for relatively high Z2 value, and even faster for lower values (not shown here). The
analytical solution can be used to define a scaling value Da

Da¼ Cde2 Z2

G0

� �1=3

, ð24Þ

that characterizes the expected distance from the critical damage value for times of the order of the time-to-failure tf of (18).
Fig. 4 shows the rate of damage growth versus damage for different values of damping. At relatively low values of

damage below �0.7, all solutions (with or without damping) are almost identical. At higher values, the solutions for
damped systems achieve maximum rate of damage growth close to the time-to-failure, tf; and then strongly decreases
toward zero. Fig. 5 shows the system behavior under different levels of loading. The parameters of the model with low
stress are the same as for the solutions shown in Figs. 2 and 4 (Z2¼10Z1). The curves with higher loading level correspond
to stress values that are increased by factor two and three.
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The asymptotic analytical solution (22) as well as the various numerical solutions discussed above demonstrate that
the static failure condition (a¼1 in the 1-D case) corresponding to the loss of convexity is unreachable. We suggest that at
some rate of damage increase (schematically shown by the dashed line in Fig. 5) the quasi-static solution is no longer valid
and inertial terms should be incorporated to describe the dynamics of the system. However, before we discuss the
transition to dynamic failure, we present additional quasi-static solution demonstrating the spatial distribution of damage
and its localization under shear loading.

3.2. Damage evolution in a non-uniform block under constant shear strain

Basic aspects of the model behavior can be illustrated by examining the damage evolution in a long strip subjected to
constant shear strain. We consider a strip with width L of 2 units, extending along the x-axis from �1 to 1 (Fig. 6). Fixed
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displacements at the edges, u9x ¼ 71 ¼ 7u0, in the direction of the strip, enforce constant total shear strain. We assume
that all functions describing material properties, damage and displacement depend only on the x-coordinate. This
formulation is similar to the 1-D case discussed in Section 3.1 with the same stress–strain relation (15). Since the damage
is function of time and x-coordinate, the structural stresses (riaUrja) contribute only to the xx-component of the stress
tensor. A quasi-static solution for the equation of motion, without body forces and neglecting the inertial terms, involves
shear stress that is homogeneous in space and depends only on time. The integral of the strain

R 1
�1 edx¼ 2u0 ¼ const:

represents the total shear strain of the zone which remains constant. Hence, its time derivative is zero and the shear stress
may be expressed as

t¼ 2G0

R þ1
�1 ðð1�aÞe=ZðaÞÞdxR þ1
�1 ðdx=ZðaÞÞ

: ð25Þ

Substituting (25) into (15) eliminates the stress from the equations and leaves only two unknowns, strain and damage.
Eq. (9) for the damage evolution of the non-local model includes a Laplacian term. In the 1-D case of a heterogeneous

system, the second spatial derivative of the damage should be added to Eq. (16) for damage evolution

@a
@t
¼ Cde2�

Cd

G0

@Z
@a

e de
dt
þD

@2a
@x2

, ð26Þ
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where D¼ kCd=G0 is the coefficient of damage diffusion. The ‘‘diffusion’’ term describes damage de-localization and it leads
to a finite nonzero width of the newly created damage zone. Even if the initial damage is localized to a point, the final
width of the damage zone, w, scales with the square root of time

w¼
ffiffiffiffiffiffiffi
Dtf

q
: ð27Þ

The time-to-failure, tf (18), is calculated in this case according to the applied stress at t¼0.
The first order differential Eq. (15) for the strain evolution (using 25), combined with the second order parabolic

Eq. (26) for the damage evolution, is solved numerically using explicit-in-time finite difference scheme for a given initial
distribution of the damage a(x,0). Fig. 6 demonstrates the damage distribution at different evolutionary stages. The time is
scaled to the time-to-failure, tf. The initial damage (dark blue line in Fig. 6a) is randomly distributed between zero and
3�10�2, except in a narrow ‘‘notch’’ around the point x¼0 with maximum value of damage a(0,0)¼0.25. In the local
damage models, without the spatial derivative term in the kinetic Eq. (26), this notch grows and produces strong strain
and damage localization (e.g., Lyakhovsky et al., 1997a). In the non-local model, damage diffusion leads to significant
widening of the notch that lasts about t/tf�0.4 for D¼10�4 (D is scaled to half width of the zone and tf). During this initial
stage the level of damage in the center of the notch, a(0,t), decreases. This is shown in Fig. 7 by black, blue and red lines
that can hardly be distinguished at this stage. When the spatial damage distribution is smoothed enough, the diffusion is
less efficient and the positive source term associated with applied deformation overcomes the diffusion.

The rate and overall damage decrease during the initial stage are controlled by the diffusion coefficient (green line in
Fig. 7a for D¼10�3). The rate of damage increase during later stages is affected by the damage-dependent Kelvin–Voigt



D
am

ag
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t = tf

Time (t/tf)

St
ra

in
 r

at
e

0

1

2

3

4

5

6

7

8

9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 7. Simulated damage (a) and strain rate (b) versus time in the center of a newly created damage zone (x¼0). The curves are plotted for several values

of D normalized to unit length and tf; Z1 Z2 normalized to G0 and tf. The employed parameters are: red line—D¼10�4, Z1¼Z2¼10�3; green

line—D¼10�3, Z1¼Z2¼10�3; blue line—D¼10�4, Z1¼Z2¼10�2; dashed black line—D¼10�4, Z1¼10�3 Z2¼10�2. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

V. Lyakhovsky et al. / J. Mech. Phys. Solids 59 (2011) 1752–1776 1763
viscosity term in the stress–strain relation. However, variations in Z1 and Z2 values in (19) have minor effects on the
evolving spatial damage distribution. The width of the damage zone remains about constant during the subsequent
damage evolution (see red and orange lines for t/tf¼1.4 and 1.5 in Fig. 6a). The expanded gray region in Fig. 6b marks the
width of the damage zone calculated using the scaling relation (27). The dashed lines in Fig. 6b show the damage
distribution simulated with D¼10�3. The light blue region corresponds to a wider zone predicted by the scaling relation
(27) for higher diffusion. This comparison shows that the damage mostly grows in a zone with width controlled by the
damage diffusion coefficient and that relation (27) may be used for estimating the diffusion coefficient from laboratory
experiments and field observations.

Damage increase toward macroscopic failure leads to an increase in the Kelvin–Voigt viscosity (19), which acts to
stabilize the system. Similar to the model solution discussed in the previous section, viscosity increase leads to decrease in
the rate of damage accumulation and prevents achieving the static failure condition (a¼ac). After a period of fast damage
growth in the center of the notch (x¼0), the process decelerates and the damage asymptotically approaches its critical
value (a-ac). The duration of the period of the damage accumulation with slow diffusion (D¼10�4) and low damping
(Z1¼Z2¼10�3 Gotf) is very close to t¼tf (red line in Fig. 7a), and is slightly longer (t�1.5tf) for the same damping but faster
diffusion (green line in Fig. 7a for D¼10�3). At the final stage of evolution the rate of damage growth is significantly
affected by the value of Z2 (blue and red lines in Fig. 7). In contrast, the rate of damage growth is hardly affected by the
value of Z1 (black dashed and blue lines in Fig. 7).

The damage growth in a narrow zone leads to strain localization in a strip with width of about w (27). Even with
complete stress drop, the final strain, ef, accumulated in the damage zone is proportional to the initial strain e0 of the zone
multiplied by the ratio between model size and damage zone width

ef ¼ e0
L

w
¼

u0

w
: ð28Þ

Relations (27) and (28) demonstrate that the width of the damage zone remains finite and the strain distribution is
regular over the entire domain. These results differ from those obtained from the local damage rheology predicting w-0
and ef-N (e.g., Lyakhovsky et al., 1997a). The rate of strain accumulation in the damage zone significantly changes with
the damage evolution. During most of the duration of damage growth the strain rate remains very low (Fig. 7b). It rapidly
accelerates at the stage corresponding to fast damage accumulation and gradually decreases during damage deceleration.
Fig. 7b (red line) shows that the largest strain rate is obtained for the low diffusion and low damping. An order of
magnitude increase in the Z2 value (blue and dashed black lines) leads to about an order of magnitude reduction in the
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strain rate. Intermediate strain rate reduction (green line) is obtained for low damping and high damage diffusion. The
discussed quasi-static model solution becomes invalid when the strain-rate values are sufficiently high to produce elastic
waves that propagate away from the newly created damage zone. This feature is addressed in the next section.

3.3. Size effect and quasi-static mode-I crack growth

Lyakhovsky (2001) addressed size-effect in mode-I crack driven by remote tension and internal pressure using local
damage model (no damage diffusion). For a given ratio between internal pressure and remote tension, the simulated rate
of crack propagation follows the empirical power law equation dL=dtpLn of Charles (1958) or the Paris and Erdogan (1963)
law with power index nZ1. At small values of the internal pressure, the self-similarity becomes complete in terms of
Barenblatt (1996) with the power index n¼ 1. In this section we compare previous results with local damage model
(Lyakhovsky, 2001) to the non-local formulation that includes damage diffusion.

The local damage rheology model provides a time scale for failure, tf of Eq. (18), associated with the rate of damage
accumulation. The non-local model includes a diffusive term in the damage evolution (9) that gives rise to additional
characteristic time. The damage diffusive time scale, associated with the structural length scale or initial crack size L, is

tD ¼
L2

D
: ð29Þ

Therefore, the non-local model accounts for a competition between delocalization due to damage diffusion and
localization due to loading. Using the expression for damage diffusion, D¼ kCd=G0, the ratio between the time-to-failure,
tf (18), and damage diffusive time scale, tD (29), is

DD ¼
tf

tD
¼

kG0

3s2L2
: ð30Þ

The damage diffusivity ratio, DD, may be viewed as a measure for the material non-locality reflecting the role of the
diffusion-controlled delocalization.

Fig. 8 shows numerical results of quasi-static growth of mode-I crack driven by remote tension (zero internal pressure)
under conditions corresponding to two order of magnitude difference in the DD value, between 10�2 and 10�4, as well as
local model, DD¼0. The simulations employ the numerical algorithm of Lyakhovsky (2001), modified for damage diffusion.
Each simulation starts with a pre-existing unit notch placed in the damage-free material and ends when the crack
approximately doubles its size. The non-dimensional crack velocity ðtf =L0ÞðdL=dtÞ increases with the crack length (Fig. 8). In
the local model (DD¼0), after initial adjustment (L=L0 � 1:2) the shape of the damage zone becomes self-similar (see Fig. 5
from Lyakhovsky, 2001) and the rate of the crack growth is proportional to its length (dL=dtpL). Certain rate-length
scaling is also obtained with the non-local model. For DD¼10�4 the slope of the rate-length curve is below the predictions
of the local model and remains about constant for length values between 1.2 and 1.6. With increase of the crack length, the
damage diffusivity ratio (30) decreases, diminishing the role of the non-locality and leading to an increase of the slope of
the rate-length curve. For larger cracks (L=L042, DDo0.25�10�4) the slopes of the local and non-local model curves are
almost identical. Similar tendency is obtained for DD¼3�10�3 and DD¼10�3, but the range of the lengths corresponding
to linear scaling significantly extends. For DD¼10�2 (not shown), the damage diffusion is very efficient, leading to fast
blunting of the crack tip, which eliminates the stress concentration around the crack tip and prevents the crack growth.
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For mode-I crack growth driven by remote tension, the modeling results (Fig. 8) predict two end-member damage
diffusivity values controlling the style of the crack behavior
(i)
Fig.
For small DD values (DDo0.25�10�4) damage diffusivity is negligibly small and crack growth is described by the local
damage model (Lyakhovsky, 2001) with linear scaling between the crack growth rate and its length (dL=dtpL). This
scaling is compatible with the classical power law scaling between stress and crack length (spL�1=2) of the linear
elastic fracture mechanics.
(ii)
 For large DD values (DD410�2) damage diffusivity is very efficient and prevents crack growth. Thus, a threshold DD

value can be defined for the onset of crack growth. Using this threshold value together with Eq. (30) yields a reciprocal
relation between stress and crack length, spL�1, consistent with a size effect for failures at crack initiation (e.g.,
Bazant, 2005).
3.4. Damage evolution in a long narrow zone under constant remote shear velocity

In this section we discuss a simplified model describing the transition from quasi-static evolution to dynamic slip event.
Slip during earthquakes occurs primarily within relatively long and thin damage zone with width of 10�3–10�5 m (e.g.,
Chester et al., 1993; Heermance et al., 2003; Rockwell and Ben-Zion, 2007). Therefore, we consider the deformation
process associated with a uniform narrow damage zone between two moving elastic blocks (see Fig. 9 for notation). The
material in the damage zone is subjected to constant compaction, ec, and increasing shear strain due to motion of the outer
elastic blocks. The total shear strain, et, of the damage zone is the sum of reversible elastic component, e, and irreversible
(viscous) component ev. The total shear strain is equal to the displacement at the edge of the damage zone divided by its
width

et ¼ eþev ¼
uðtÞ

w
: ð31Þ

We define an irreversible (viscous) displacement component, uv ¼ evw, and related irreversible strain rate
e¼ det=dt¼ ð1=wÞðduðtÞ=dtÞ. With this notation, the elastic strain, its invariants and ratio of the strain invariants are

e¼ uðtÞ�uvðtÞ

w
I1 ¼ 3ec

I2 ¼ 3e2
c þ2e2

x¼
I1ffiffiffiffi
I2

p ¼
3ecffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3e2
c þ2e2

p : ð32Þ

For a uniform time-dependent damage, a(t), the structural stresses (riaUrja) are zero and the stress–strain relation for
the shear stress component, t, in the damage zone is

t¼ ð2mðaÞ�gðaÞxÞeþZðaÞe: ð33Þ

In a 1-D case with ec¼const. the conditions of convexity of the elastic strain energy (11) and (12) are reduced to

@t
@e
¼ 2mðaÞ�gðaÞx�gðaÞ @x

@e
¼ 0: ð34Þ
Narrow damage zone α(t)

Elastic block (α=0)L
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9. Geometry and notations of a model setup for uniform narrow damage zone between two purely elastic blocks moving with constant velocity.
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The condition of convexity (34) together with the linear connections between the elastic moduli and damage (4) lead to
explicit relation for the gr value and critical damage acr(x)

gr ¼
6m0

x3
0�6x0

acrðxÞ ¼
x3

0�6x0

x3
�6x0

: ð35Þ

The rate of damage accumulation (9) for the case of uniform damage distribution (ra¼ 0) combined with relations (10)
and (19) yields

da
dt
¼

CdI2ðx�x0Þ�
Cd
m0

Z2

ðacr�aÞ2
ee, for xZx0

C1exp a
C2

� �
I2ðx�x0Þ, for xox0:

8><
>: ð36Þ

Two different mechanisms of irreversible strain accumulation are considered here. One is gradual accumulation of
damage-related irreversible strain with rate proportional to the rate of damage accumulation (7). The other is associated
with the transition from the damaged solid phase to the granular phase, and formation of a ‘‘mushy region’’ in the vicinity
of the critical level of damage, a¼acr(x). The effective compliance or inverse of material viscosity of the mushy region is
equal to zero for the solid state and gradually increases with (1�P), the probability of being in a granular state (14)

dev

dt
�

1

w

duv

dt
¼ Cvt

da
dt
þCgtð1�PðaÞÞ, ð37Þ

where Cg is the compliance of a granular material (a¼acr and P¼0). The viscosity of the granular material is not necessarily
constant, but is rather related to the ‘‘granular temperature’’ and the structure of the granular material (e.g., Savage, 1998).
However, as a first approximation we assume a constant Cg. Since we discuss a low-temperature brittle behavior, we
ignore temperature-activated ductile flow mechanism.

Eqs. (33), (36), and (37) define the evolution of the damage zone for prescribed loading at its edges. This loading is
calculated using the stress distribution in the outer purely-elastic blocks. The displacements inside the blocks, ub(z,t), may
be represented as a sum of two different components:

ubðz,tÞ ¼ u0ðtÞ
z�w=2

L
�uðtÞ

z�ðLþw=2Þ

L

� �
þuSðz�VStÞ: ð38Þ

The term enclosed in the square brackets stands for linear interpolation between displacements at the edges, u(t) and
u0(t), which is the static solution of linear elasticity. During the periods of fast damage accumulation and high strain rates
in the damage zone, shear waves may be generated and propagate away from the damage zone. The term uS(z�Vst)
represents a planar shear wave traveling with velocity Vs. The employed signs hold for the upper block, and opposite signs
should be applied for the lower block. Taking the spatial derivative of the displacement (38) and using @uS=@z¼

�ð1=VsÞð@uS=@tÞ, the shear stress at the interface between the block and the damage zone, tb, is

tb ¼ m0

u0ðtÞ�uðtÞ

L
�

1

VS

@uðtÞ

@t

� �
; ð39Þ

The first term stands for static elasticity and the second is usually referred to as radiation damping (e.g., Rice and Ben-
Zion, 1996). Balancing the stresses at the interface between the elastic block (39) and the damage zone (33) leads to a final
equation describing evolution of the entire system

m0

u0�u

L
�

1

VS

du

dt

� �
¼ 2mðaÞ�gðaÞx
	 
u�uv

w
þZðaÞ d

dt

u

w

� �
: ð40Þ

The obtained set of Eqs. (33), (36), (37), (40) fully defines the evolution of the system for given initial conditions and
block velocity. These equations are solved numerically for different evolutionary scenarios discussed below.

The numerical simulations are done for a model size of L¼104 m which is several orders of magnitude larger than the
width of the damage zone (10�3–10�5 m) discussed above. To make the simulations more stable and efficient, we use
w¼10�3 m. Typical values for the elastic moduli of intact crystalline rocks are l0�m0�1010 Pa. Characteristic values of the
parameters controlling the onset of damage and its kinetics, constrained from previous laboratory studies (e.g., Hamiel
et al., 2004; Lyakhovsky et al., 2005), are x0¼�0.8, Cd¼10/s, C1¼10�14/s, and C2¼0.02. The parameters C1, C2 are not well
resolved, but their precise values play a minor role here since the details of the healing process affect primarily studies
with multiple failure cycles. The expected slip velocity during seismic events is of the order of meter per second and the
estimated shear stress in the seismogenic zone is of the order of 10–100 MPa (e.g., Ben-Zion, 2001). These values can be
used to estimate the lower limit of the viscosity of the granular material in the damage zone, which can be as low as
102 Pa s and correspond to Cg¼10�2/Pa s. The values of the viscosity coefficient Z2 (19) and parameter b (14) controlling
the transition between solid and granular states are not well constrained. Therefore, we analyze the role of these
parameters by varying their values in the range: Z2¼102–104 Pa s and b¼10�2

�10�3.
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The initial conditions of the numerical simulations correspond to zero damage and shear stress. A long-term quasi-
static stress accumulation starts with the onset of the block motion. For typical tectonic velocities associated with plate
motion (millimeters to centimeters per year), it takes years to accumulate shear strain corresponding to the onset of
damage. In the performed simulations we assume that the block velocity is v¼10�9 m/s and do not show the initial quasi-
static loading stage. Following the onset of damage (x¼x0), the initial rate of damage accumulation is relatively slow. It
takes more than 4000 s for damage to grow from zero to a�0.3 (red line in Fig. 10). Then, the damage growth accelerates
toward its critical value, but the enhanced damping (Z2¼102 Pa s) reduces the rate of the damage accumulation. When the
distance to the critical damage value, Da¼acrit�a, is of the order of the b�value taken here to be b¼0.005, the effective
viscosity of the mushy region rapidly decreases (black line in Fig. 10) and enables efficient stress relaxation in the highly
damage zone. The relaxation process is terminated when the elastic component of the strain is reduced to the values
corresponding to x¼x0, when material healing starts. As shown in Fig. 10, relatively high confining pressure (100 MPa)
leads to fast damage decrease (healing) and increase of the effective viscosity of the damage zone.

Two processes operate at the last stage of evolution, namely material healing due to the confining pressure and shear
strain accumulation due to the ongoing plate motion. After a long-term loading stage, shear strain accumulation leads to
the onset of damage growth and initiation of the next seismic cycle. A phase plane in a�x coordinate system (Fig. 11)
illustrates the different stages of system evolution during a single seismic cycle. During the initial stages the evolution is
quasi-static and not sensitive to the damping and width of the mushy region. During the stress relaxation stage the
evolutionary path is approximately parallel to a line corresponding to a¼acrit at a distance Da that is strongly controlled
by the b and Z2 values. Fig. 12 shows the effective viscosity of the mushy region as a function of Da for different b values.
The markers denote the Da and viscosity values obtained in different numerical runs and the numbers next to the markers
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indicate the maximum slip velocity obtained in each run. Under the adopted loading conditions and model geometry, the
slip velocity is above 1 m/s for effective viscosity values below 105 Pa s. These values of slip velocities are within the range
of estimated seismic slip rates during earthquakes (e.g., Ben-Zion, 2001). The slip velocity steeply increases with the onset
of the stress relaxation stage and then gradually decreases (Fig. 13). In the cases corresponding to dynamic event with slip
velocity above 1 m/s (Fig. 13a), the duration of the stress relaxation stage is of the order of tens to hundred of seconds. In
terms of earthquake terminology, this corresponds to the co- and early post-seismic stages. The duration of the stress
relaxation stage may be as long as several hours for cases with low slip velocity (Fig. 13b). Due to high damping
(Z2¼104 Pa s) and narrow mushy region (b¼0.001), the effective viscosity remains relatively high (marker 1 in Fig. 12) and
the relaxation process is very slow.
4. Discussion

The continuum damage mechanics employed in this study models the effects of distributed cracks in terms of a single
scalar damage parameter a. Representative elementary volumes with a sufficiently large number of cracks corresponding
to given values of a are assumed to be uniform and isotropic. The evolution and organization of the elementary damage
zones simulated using the local version of the damage model produce macroscopic anisotropy and various patterns of
large-scale fault zone structures in response to external loading (e.g., Ben-Zion et al., 1999; Lyakhovsky et al., 2001;
Lyakhovsky and Ben-Zion, 2009). As shown by Lyakhovsky (2001), the process zone created by distributed damage at the
tip of a mode I crack eliminates the stress singularity and provides a finite rate of quasi-static crack growth compatible
with experimental observations. The model also predicts a strong asymmetry of the process zone that is generated around
the tip of a pre-existing fault zone subjected to oblique loading. This asymmetry produces trajectories of the evolving
newly created damage zones in out-of-plane directions that are in good agreement with the predicted directions of wing
cracks under mixed mode I and mode II loading (Lyakhovsky and Ben-Zion, 2009).

It is generally agreed that analysis of distributed damage cannot be based on the classical, local constitutive models
(e.g., Bazant, 1991). The non-local continuum approach, either of integral or gradient type, has generally been accepted as a
proper way to avoid artificial, excessive localization and ensure mesh-independent energy dissipation (e.g., Bazant and
Jirasek, 2002). A great variety of integral-type, non-local, continuum mechanics models are formulated in terms of
constitutive laws involving weighted averages of a state variable over a certain neighborhood of the material point (e.g.,
Marotti de Sciarra, 2009 and references therein). The gradient-type models are widely used to characterize qualitative
features of two-phase systems, i.e., the Ginzburg–Landau equation and the Cahn–Hilliard equation. Both these equations
are based on the free energy of a continuum, which depends on the value of the order parameter (hidden state variable) at
a point and also on its gradient (e.g., Gurtin, 1996).

Following the above ideas, we assume that the free energy of a damaged solid depends not only on the scalar damage
parameter, a, but also on it spatial derivative, ra. The non-local, damage-gradient term leads to structural stresses in the
constitutive stress–strain relations, and a damage diffusion term in the kinetic equation for damage evolution. The damage
diffusion eliminates the unrealistic singular localization of the local damage model (Fig. 6), and similarly to the Ginzburg–Landau
and the Cahn–Hilliard equations it leads to a diffuse interface where damage undergoes large variations. The finite width of the
localization zone provides a fundamental length scale that allows numerical simulations with the model (using sufficiently small
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grid size) to achieve the continuum limit. The model results predict that the width of the damage zone, w, is scaled with square
root of the time-to-failure, tf, multiplied by the damage diffusion coefficient (27). Thus, more localized damage zones are expected
with same mechanical properties for short tf, which is associated with high stress levels (18). This implies that higher shear
localization is expected in deep parts of natural fault zones, in agreement with observations associated with exhumed faults (e.g.,
Chester et al., 1993; Sibson, 2003). Similarly, the dependency on tf predicts higher localization for situations corresponding to
lower values of the initial elastic modulus and higher values of the rate coefficient Cd of brittle damage evolution. These
expectations should be tested with future laboratory experiments.

Bazant (2005) noted that nonlocal distributed damage models are capable of reproducing size effect. Our modeling
results for mode-I quasi-static crack growth demonstrate that accounting for damage diffusion allows reproducing linear
scaling between stress and crack length, spL�1, for failures at crack initiation. In contrast to the power law scaling,
spL�1=2, of linear elastic fracture mechanics, the linear scaling has been experimentally observed (e.g., Bazant and Novak,
2001) and derived theoretically (Bazant, 2005) as a nonlocal generalization of the Weibull theory for failures at crack
initiation. The non-dimensional damage diffusivity ratio of Eq. (30) reflects the competition between the diffusion-
controlled damage delocalization in the non-local model and localization driven by external load. The value of the damage
diffusivity ratio defines a transition from the linear scaling for failures at crack initiation to the power law scaling common
for local damage rheology models and linear elastic fracture mechanics.

Following our previous studies (e.g., Lyakhovsky et al., 1997b; Hamiel et al., in press), the local part of the free energy
includes non-analytic, second-order term, accounting for different effective elastic moduli under compression and tension,
and for the increase in their difference when approaching macroscopic brittle instability. At the critical damage level the
tensile modulus vanishes while the compressive modulus remains finite. A corresponding simplified 1-D stress–strain
relation mimics the mechanical behavior of a cohesionless granular material where tensile stresses cannot be supported.
Based on this analogy, Myasnikov and Oleinikov (1991) and Revugenko (2006) discussed a mathematical model of
granular material as a limit case of media that react differently to tension and compression. The condition of macroscopic
stability of solid under 3-D deformation is convexity of the elastic strain energy, which is necessary for the existence of
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a unique solution for the static problem. Ben-Zion (2008) noted that the loss of convexity of the energy function at a¼acr is
a hallmark of phase transitions and suggested that it signifies a transition from a highly damaged solid to a granular
material. In this study we assume that similarly to the mushy region discussed in a context of the Stefan problem (e.g.,
Crank, 1987), near the critical state, a¼acr, there exists a mixture zone with certain probability for a material point (or
location in space) to be either in the solid or the granular phase. Significant reduction of the mixture zone viscosity with
increasing probability of being in the granular phase provides a mechanism for fast slip accumulation and dynamic stress
drop during instability event. As shown in the numerical simulations, changes of the effective viscosity of the mushy
region can produce (Fig. 13) transitions between dynamic and slow slip, with low viscosities leading to fast slip events.
Further theoretical and experimental investigations are needed to explore the nature of the mushy region to understand
better what controls its mechanical behavior and detailed of the evolution from slow to fast slip.

Many local and non-local damage rheology models combine elasticity with Maxwell-type visco-elasticity or plasticity
to account for gradual irreversible strain accumulation. These models leave out the enhanced damping of the elastic waves
in highly damaged material, which can be important for some engineering and continuum mechanics applications under
conditions of brittle deformation. Moreover, such models ignore important potential feedback mechanisms between
changes of elastic moduli in the slipping zone and subsequent rupture behavior and radiation. For example, the reduction
of elastic moduli in the shear localization zone may generate significant bimaterial interfaces, which can produce strong
dynamic coupling between slip and changes of normal stress that were shown to have significant effects on the mode and
properties of ruptures (e.g., Weertman, 1980; Adams, 1995; Ben-Zion 2001). The presented damage model can be used to
study such feedback mechanisms and related aspects of the motion radiated to the bulk. Our damage model also includes
the strain rate tensor as an additional thermodynamic state variable, leading to the Jefferys model which combines
Maxwell and Kelvin–Voigt visco-elasticity (e.g., Christensen, 2003). This type of model accounts for both stress relaxation
of the Maxwellian viscosity with the retardation of the Kelvin–Voigt viscosity that damps high frequency oscillations and
is widely used in seismology for attenuation of seismic waves (e.g., Aki and Richards, 2002). The damage-dependent
Kelvin–Voigt viscosity parameter, Z(a), not only controls the quality factor in the bulk, but also significantly affects the
damage growth at stages of fast damage accumulation associated with high strain rates. The performed quasi-static
numerical simulations show (Fig. 4) that model solutions with or without damping are almost identical for relatively low
values of damage. However, for high values of damage (a40.7 in the presented cases), the rates of damage growth for
damped systems are capped at some levels, inversely proportional to the damping, and then strongly decreases. In the
model formulation with a transition at a-acr to a granular phase, the low viscosity granular flow is responsible for rapid
slip accumulation and transition from quasi-static to dynamic event.

Scaling analysis of the model equations can clarify the conditions that control the transition from quasi-static evolution
to dynamic failure. This is done below by linearization of the relations between strain, elastic moduli and damage, as well
as neglecting the irreversible strain accumulation in the force balance Eq. (40). During the acceleration stage of
deformation, the rate of damage growth becomes a major factor controlling the deformational processes in the damage
zone, and changes in the far field displacement may be ignored. With these assumptions the rate of motion is proportional
to the rate of damage accumulation

du

dt
¼

w

L

u0acr

2ðacr�aÞ2
da
dt
: ð41Þ

The quasi-static approximation is valid as long as the radiation damping term in (40) is much smaller than the static
strain, i.e.,

d
u0

L
¼

1

VS

du

dt
, ð42Þ

where d is some small factor. The value of d is scaled by the ratio between the elastic strain associated with wave
propagation at the beginning of the dynamic regime ((1/Vs)(du/dt)) and the elastic strain at the end of the quasi-static
regime (u0/L). Brittle rocks usually fail at elastic strains of the order of �10�2, while strains associated with seismic waves
are at least three orders of magnitude less, i.e., do10�3. Condition (42) together with Eq. (41) can be used to define
‘‘dynamic damage’’, ad, at the transition from quasi-static to dynamic regime

ad ¼ acr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wacr

2dVs

da
dt

s
: ð43Þ

A similar expression in the form ad ¼ acr�
ffiffiffiffiffiffiffiffi
td _a

p
was adopted by Lyakhovsky (2001) to account for dynamic weakening

in quasi-static modeling and simulate a transition from quasi-static to dynamic fracturing. Previous derivations based on
general dynamic stability analysis of the damaged material (Ben-Zion and Lyakhovsky, 2006) provided the square root
correction to the critical a-value, but did not connect the dynamic weakening parameter, td, with specific physical
properties. Using acr¼1 in (41), the above derivation provides the following explicit connection between different physical
parameters of the model

td ¼
w

2dVs
: ð44Þ
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Ben-Zion and Lyakhovsky (2006) constrained the value of td for situations corresponding to natural fault zones, by
requiring that simulated aftershock sequences with the local damage rheology model are consistent with the empirical
Bath law (the magnitude of largest aftershock is �1 unit less than that of the mainshock). Simulations with width of
damage zone w¼500 m led to td¼3�102

�3�104 s. This range is comparable to what is predicted by (44) with Vs�3 km/s,
w¼500 m, and d¼5�10�4

�5�10�6. Hence, relation (44) with the above estimated d-factor provides a physical basis for
scaling the dynamic damage-weakening parameter td to other model parameters. The results imply that the slow quasi-static
deformation phase preceding the dynamic failure can be successfully simulated with the local damage version of the model
that employs the dynamic damage variable (43). However, a quantitative description of the transition to the dynamic regime
and detailed analysis of associated deformation features (localization width, slip velocity, etc.) require the entire formulation
presented in this study. A more complete analysis of the deformation processes preceding and following the occurrence of
brittle instabilities (loss of convexity in the discussed model) will require additional details on the functional forms associated
with the transitions between highly damaged solid and granular material. This will be the subject of a follow up work.
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Appendix A. Thermodynamic formulation

The total energy of a solid with a unit mass includes internal and kinetic components:

E¼ EkþU: ða1Þ

The specific kinetic energy of the solid is Ek ¼ vivi=2 with vi being velocity, while the internal energy is expressed
through the free energy F, temperature T, and entropy S as U¼FþTS. The energy balance equation dictates that the change
in the energy of a system is equal to the divergence of the heat flux JðqÞi and total external work W

dE

dt
¼

dEk

dt
þ

d

dt
ðFþTSÞ ¼�riJ

ðqÞ
i þW : ða2Þ

The entropy balance equation includes entropy flux JðsÞi and non-negative local entropy production G

dS

dt
¼�riJ

ðsÞ
i þG, GZ0: ða3Þ

The non-negative local entropy production results from all the dissipative irreversible processes in the solid including
internal friction and damage evolution. From (a2), the change in the free energy can be expressed as

dF ¼�SdTþ
@F

@eij
deijþ

@F

@eij
deijþ

@F

@adaþ @F

@ðriaÞ
dðriaÞ: ða4Þ

In a system with internal motions, the time derivative is given by d=dt¼ @=@tþviri. Similarly,

ri
da
dt

� �
¼ri

@a
@t
þvkrka

� �
¼

dðriaÞ
dt
þeikrka: ða5Þ

From (a5), the time derivative of the last term in (a4) can be written as
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dt
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� �
: ða6Þ

The local entropy production may be represented as

G�ri JðsÞi �
JðqÞi

T
�

1

T

@F

@ðriaÞ
da
dt

 !
¼GMþGHþGVþGD: ða7Þ

The terms on the right side of (a6) are associated with the following energy components:
Mechanical work

GM ¼�
1

T
vi

dvi

dt
þ

@F

@eij
�

@F

@ðriaÞ
rja

� �
eij�W

� �
; ða8Þ

Heat transport

GH ¼�
1

T2
JðqÞi þ

@F

@ðriaÞ
da
dt

� �
riT; ða9Þ
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Viscous deformation

GV ¼
1

T

@F

@eij

dgð0Þij

dt
�
@F

@eij

deij

dt

 !
, ða10Þ

and damage evolution

GD ¼�
1

T

@F

@a�ri
@F

@ðriaÞ

� �
da
dt
: ða11Þ

Following the literature of non-equilibrium thermodynamic (e.g., de Groot and Mazur, 1962), the divergence term on
the left side of (a7) is eliminated by defining the entropy flux as

JðsÞi ¼
JðqÞi

T
þ

1

T

@F

@ðriaÞ
da
dt
: ða12Þ

In addition to the usual relation JðsÞi ¼ JðqÞi =T of local models, Eq. (a12) includes a second entropy flux component that is
associated with damage evolution in the non-local formulation.

The equation of motion of a continuum is given by the standard relation

r dvi

dt
¼
@sij

@xj
þ fi, ða13Þ

where fi is the body force. The model formulation should satisfy conservation of mechanical energy (GM¼0) if all the
dissipative processes in the system are frozen. This condition leads to the definition of the stress tensor

sij ¼ r
@F

@eij
�

1

2

@F

@ðriaÞ
rjaþ

@F

@ðrjaÞ
ria

� �� �
: ða14Þ

Since the entropy flux GM in (a8) includes, in addition to the usual term @F=@eij (e.g., Malvern, 1969), terms associated
with ra, there are related ‘‘structural stresses’’ in the constitutive relations (a14). These stresses are associated with
heterogeneous damage distribution and can be important in zones with high ra values.

Appendix B. Wave attenuation in damaged rocks

Experimental measurements of wave attenuation in various rocks have been studied extensively (e.g., Born, 1941; Nur
and Simmons, 1969; Johnston et al., 1978; Winkler and Nur, 1982; Liu and Ahrens, 1997; Van Den Abeele et al., 2000;
Wulff et al., 1999; Ai and Ahrens, 2007). Several theoretical models were developed to relate wave attenuation to crack
density of dry and saturated cracked media (e.g., Walsh 1966,; Mavko et al., 1979; Johnston et al., 1978; Chatterjee et al.,
1980; Hudson, 1981; Aki, 1982; Caleap et al., 2009). The commonly used attenuation mechanisms include friction, fluid
flow and scattering. Some authors consider friction on thin cracks and grain boundaries as a dominant attenuation
mechanism for consolidated rocks; others attribute attenuation primarily to energy loss related to fluid flow. Several
studies relate the dispersion and attenuation of seismic waves to scattering by heterogeneities embedded in the Earth’s
crust. Because all theoretical models connect wave attenuation with the existence of cracks and other types of defects, the
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relationship between the attenuation coefficient and rock damage is important for understanding wave propagation
in rocks.

Theoretical models considering effective elastic properties of rocks with randomly distributed or oriented micro-cracks
predict linear increase of the attenuation coefficient with micro-crack density. Liu and Ahrens (1997) and others used in
laboratory studies of acoustic rock properties a damage parameter, D, defined as

D¼ 1�
V

V0

� �2

, ðb1Þ

where V is the velocity of the cracked rock and V0 is the intrinsic rock velocity. Neglecting pressure-induced density
change, the damage is equivalent to the reduction of the elastic modulus divided by the elastic modulus of the undamaged
rock, and is directly connected to the crack density (e.g., O’Connel and Budiansky, 1974). Figs. b1–b3 present
experimentally measured attenuation coefficient as function of material damage, along with several line fits to the data.

Most of the experimental results (Figs. b1, b3) suggest stronger increase of the attenuation coefficient with rock damage
than a linear trend. The only experimental results (Fig. b1) with highly damaged material suggest steep increase of the
attenuation prior to the material failure. Following this observation we speculate that seismic waves are over-damped in
highly damaged rocks. Beyond some damage level the rocks cannot support load and hence mechanical oscillations cannot
propagate. This means that the attenuation coefficient z(D) should approach infinity toward the failure and may be
approximated as

zðDÞ ¼ z1þ
z2

Dcr�D
: ðb2Þ

This is the simplest mathematical expression that includes only two fitting parameters, z1, z2 and a critical damage
value, Dcr, at failure. Figs. b1–b3 show fits to experimental data with this equation. The data of Fig. b1 are strongly non-
linear and can be fitted well by Eq. (b2). The other experimental data were measured in relatively narrow ranges of
damage values and the fit with Eq. (b2) is of similar quality to fits using linear (Fig. b2) or quadratic (Fig. b3) relations
suggested by others. At the very least, the experimental data are not inconsistent with the proposed relation (b2) between
the attenuation coefficient z(D) and damage. More general formulation should probably also account for a frequency-
dependent damping by including frequency in the functional relation (b2) for the attenuation coefficient.
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