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S U M M A R Y
We address the gradual transition from brittle failure to cataclastic flow under increasing pres-
sures by a new model, incorporating damage rheology with Biot’s poroelasticity. Deformation
of porous rocks is associated with growth of two classes of internal flaws, namely cracks and
pores. Cracks act as stress concentrations promoting brittle failure, whereas pores dissipate
stress concentrations leading to distributed deformation. The present analysis, based on ther-
modynamic principles, leads to a system of coupled kinetic equations for the evolution of
damage along with porosity. Each kinetic equation represents competition between cracking
and irreversible porosity change. In addition, the model correctly predicts the modes of strain
localization such as dilating versus compacting shear bands. The model also reproduces shear
dilatancy and the related change of fluid pressure under undrained conditions. For triaxial com-
pression loading, when the evolution of porosity and damage is taken into consideration, fluid
pressure first increases and then decreases, after the onset of damage. These predictions are
in agreement with experimental observations on sandstones. The new development provides
an internally consistent framework for simulating coupled evolution of fracturing and fluid flow
in a variety of practical geological and engineering problems such as nucleation of deformation
features in poroelastic media and fluid flow during the seismic cycle.
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1 I N T RO D U C T I O N

Geological evidence indicates that coupling of fluid flow and cracks
in deformed porous rocks controls faulting processes and fluid flow
in the earth’s crust (see Hickman et al. 1995 for review). The evolu-
tion of fractures together with porosity is fundamental to a variety of
geological problems including nucleation and growth of deforma-
tion features (Aydin & Johnson 1983; Menendez et al. 1996), fluid
flow in fractured rocks (Renshaw 1995, 1996; Zhu & Wong 1996,
1997; Ge & Stover 2000), and the effective strength of the faulted
crust and variations of pore fluid pressure during the earthquake
cycle (Byerlee 1990, 1993; Rice 1992; Blanpied et al. 1992; Sleep
& Blanpied 1992; Miller et al. 1996). The studies cited above have
shed light on particular aspects of these geological problems and
certain couplings between them. Further progress in this direction
depends on our ability to incorporate various aspects of rock de-
formation in a unified formulation. The purpose of this paper is to
develop a general framework suitable for studies of a wide variety
of rock types, loading conditions and timescales.

We present a general formulation for mechanical modelling of
interaction between two classes of evolving flaws: cracks and pores.
We assume that the density of flaws is uniform over a length scale
much larger than the length of a typical flaw, yet much smaller than
the size of the entire deforming domain. For a system with a suffi-

ciently large number of cracks and pores one can define a representa-
tive volume in which the flaw density is uniform. For such a system,
one can introduce intensive variables for damage and porosity, re-
spectively. The model combines the classic poroelastic formulation
of Biot together with a distributed damage rheology model. The
theoretical analysis based on thermodynamic principles leads to a
system of coupled kinetic equations for the evolution of damage and
inelastic porosity. The model reproduces two fundamental observa-
tions in porous rocks: the yield curve of high porosity rocks and the
different modes of failure of sandstone including gradual transition
from brittle failure to cataclastic flow; and the variations of fluid
pressure during brittle deformation.

2 P R E V I O U S W O R K

In this section we review the relevant experimental work and pre-
vious modelling of yielding and damage in elastic and poroelastic
rocks. Rock porosity exerts a dominant control on the style of me-
chanical failure. While in low-porosity crystalline rocks the yield
stress increases monotonically with pressure, in high-porosity rocks
there may be a yield cap at high pressure, where the slope of the
yield curve has negative values for high pressure (Fig. 1). The tran-
sition from positive to negative values of the slope is related to the
different modes of failure in high-porosity rocks, i.e. transition from
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Figure 1. Experimentally measured yield stress for Berea sandstone compared with calculated curves with different values of n and of the ratio D/C (eq. 35b).
Symbols indicate experimental results from Bernabe & Brace (1990) (diamonds), Wong et al. (1997) (squares) and Baud et al. (2000) (triangles). The ratio
D/C is given in 107 MPa−n . The curve corresponds to n = 2 and D/C = 3.5 · 10−7 MPa−2 provides a reasonable fit to the data from Wong et al. (1997).

brittle failure to cataclastic flow (Wong et al. 1997). Three regimes
of deformation can be outlined according to the confining pressure:

(i) Failure of both low-porosity and high-porosity rocks at rel-
atively low confining pressures is associated with dilatancy due to
microcracking (Lockner et al. 1992; Wong et al. 1997). Laboratory
experiments in high-porosity rocks indicate that under low effective
pressure, failure is associated not only with dilatancy, but also with
strain softening and the creation of localized shear dilation bands
(Wong et al. 1997; Wong & Zhu 1999).

(ii) With the increase of effective pressure, shear bands are ac-
companied by strain hardening and porosity loss due to grain crush-
ing (Menendez et al. 1996; Wong et al. 1997). Such shear bands
associated with grain crushing are observed in the field (e.g. Aydin
& Johnson 1978).

(iii) Failure at high effective pressure is accompanied by com-
paction and transition to non-localized cataclastic flow (Wong et al.
1997; Wong & Zhu 1999).

The analysis of deformation of fluid-saturated porous materials
is based on mixture theories. Pore pressure coupled with matrix
deformation was first introduced by Terzaghi (1925) with his well-
known 1-D consolidation theory that relates the evolution of pore
pressure to the stresses in a solid skeleton. Biot (1941) was the first
to formulate a fully 3-D poroelastic theory. His now classical ther-
modynamic approach supplements elasticity equations for a poroe-
lastic solid with a constitutive equation for increment of fluid con-
tent. Significant progress has been made in developing constitutive
and field equations for linear poroelastic media (e.g. Nikolaevsky
et al. 1970; Nur & Byerlee 1971; Rice & Cleary 1976). The ther-
modynamic approach allows construction of non-linear models for
visco–elasto-plastic porous media (e.g. Biot 1973; Coussy 1995).

Fluid pressure affects rock failure and plays an important role
in the seismic cycle. It reduces the frictional resistance stress via
Coulomb failure criterion (Byerlee 1967), hence, this mechanism
was suggested for weakening major fault zones (Byerlee 1990;
Rice 1992). Fluid pressure change induced by porosity change un-
der undrained conditions has long been recognized (see Paterson

1978 for review). Linear elasticity (Biot 1941) predicts that under
undrained conditions, fluid pressure will only change proportion-
ally to the change in the mean stress. The proportionality coefficient
is known as the Skempton coefficient, B. According to Skempton
(1954) the deviatoric stresses can also affect fluid pressure under
undrained conditions. Following Skempton (1954) and others (Biot
& Willis 1957; Hankel & Wade 1966), Lockner & Stanchits (2002)
expressed the change in fluid pressure under undrained conditions,
pu, as

dpu = ∂p

∂σm
dσm + ∂p

∂τm
dτm = Bdσm + η dτm, (1)

where σ m is the mean stress, τm = 1
2 (σ1 − σ3) is the maximal shear

stress, and η is an additional coefficient that connects fluid pressure
to the shear stress.

In porous rock the change in pore volume can be divided into elas-
tic (reversible) and inelastic (irreversible) variations of the porosity.
Elastic porosity variation is treated in the framework of Biot’s theory
of poroelasticity, and is within the order of the elastic volumetric
strain. The evolution of the inelastic porosity is often treated in
the framework of mechanical and chemical compaction (e.g. Rutter
1983; McKenzie 1984). Chemical compaction refers to processes
such as pressure solution and mineral reaction. It is convenient to
approximate the pressure-solution process by a viscous creep law
(Rutter 1983; Birchwood & Turcotte 1994; Fowler & Yang 1999). In
these models of pressure-solution creep or viscous compaction, the
rate of porosity change is proportional to the difference between the
mean stress and the fluid pressure, termed the effective pressure.
The coefficient of proportionality is the inverse of the effective bulk
viscosity. Models that combine the evolution of the elastic variation
and inelastic variation of the porosity were suggested as more realis-
tic descriptions of compaction in sedimentary basins (e.g. Connolly
& Podladchikov 2000; Yang 2001; Suetnova & Vasseur 2000).

Several attempts have been made to extend the rate- and state-
dependent friction models (e.g. Dieterich 1979, 1981; Ruina 1983)
to account for fluid-fracture interaction. Sleep (1995) and Segall &
Rice (1995) proposed models that combine rate- and state-dependent
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friction together with porosity evolution. These models provide a
framework that can be used to simulate most important aspects of
the earthquake cycle. However, rate- and state-dependent friction
formulation assumes that deformation is localized on pre-existing
well-defined frictional surfaces. Moreover, this formulation does not
provide a mechanism for understanding distributed deformation and
fault nucleation.

Yielding of porous rocks, that includes brittle behaviour at low
pressures and semi-brittle to cataclastic flow at high pressures, is
often modelled by an elastoplastic formulation (Aydin & Johnson
1983; Olsson 1999; Issen & Rudnicki 2000; Besuelle 2001). How-
ever, this formulation does not account for fracture evolution, and
uses two independent yield surfaces: shear yield surface to describe
failure at the brittle region; and compactive yield surface for the
semi-brittle and cataclastic flow region.

A rheological model of faulting processes in porous rocks should
include the following aspects: subcritical crack growth from very
early stages of the loading; material degradation due to increas-
ing crack concentration coupled with the evolution of the inelastic
porosity (dilation and compaction); gradual transition from macro-
scopic brittle failure to cataclastic flow; and post failure deforma-
tion and healing. The interaction and evolution of microcracks in
low porosity materials have been treated in the framework of dam-
age rheology models. Among them are Robinson’s (1952) linear
cumulative creep damage law, Hoff’s (1953) ductile creep rupture
theory, Kachanov’s (1958, 1986) brittle rupture theory, Rabotnov’s
(1969, 1988) coupled damage creep theory, and many modifications
of these theories. Several researchers (see the review of Kachanov
1994) proposed models with a scalar damage variable that fit ex-
isting experimental results reasonably well. In the study of Hansen
& Schreyer (1994), the scalar isotropic damage model correlates
with all measured quantities except the change in the apparent Pois-
son ratio. For this reason, Ju (1990) and Hansen & Schreyer (1994)
suggested upgrading the damage variable from a scalar to a tensor
quantity. Such an anisotropic tensorial damage model contains at
least three adjustable parameters that can be used to simulate the
evolution of the apparent Poisson ratio. Shao (1998) and Bart et al.
(2000) proposed an anisotropic poroelastic damage model for satu-
rated brittle porous materials to describe the main features related to
the damage induced by microcracks, namely deterioration of poroe-
lastic properties, evolved anisotropy and dilatancy. However, this
model does not consider effects of compaction and possible micro-
crack closure under compressive stresses. Therefore a new model
that accounts for these effects is required for describing the transi-
tion from brittle failure to cataclastic flow.

Variations of elastic moduli and Poisson’s ratio with damage in-
tensity, under different types of load, can also be described using
a non-linear elastic model with scalar damage, provided that it is
scaled properly with the ratio of strain invariants. This has been done
in the damage model proposed by Lyakhovsky & Myasnikov (1985),
Agnon & Lyakhovsky (1995) and Lyakhovsky et al. (1997a,b). Here
we further develop that model, combining it with the classical poroe-
lastic formulation of Biot. We use thermodynamic principles to con-
struct a phenomenological model for coupled evolution of damage
and porosity, and constrain the final model parameters by comparing
the theoretical predictions with various laboratory results.

3 T H E R M O DY N A M I C S A N D
C O N S T I T U T I V E R E L AT I O N S

We consider the porosity and damage intensity as thermodynamic
state variables. The state of the system of a damageable poroelastic

medium with a diffusing pore fluid is completely defined by five
independent state variables: temperature, T; Cauchy elastic strain
tensor, ε i j ; volume fluid content, ζ ; inelastic porosity, φ; and non-
dimensional damage state variable, α. Inelastic porosity refers to
inelastic change in the pore volume (Coussy 1995), and it is the
volume fraction of pores after complete unloading.α ranges between
0 and 1, where in undamaged material α = 0, and failure occurs in a
critical α. Although α is defined as a damage variable, it is actually
responsible for the change in material stiffness: α is controlled by
chemical and mechanical processes such as cracking, mechanical
and chemical healing, crack sealing, pressure solution, etc.

We approach the model with irreversible thermodynamics, which
provides constraints on the rates of dissipative processes (Onsager
1931; Prigogine 1955; deGroot & Mazur 1962). This approach was
successfully applied to kinetics of chemical reactions and phase
transitions (e.g. Fitts 1962; deGroot & Mazur 1962) and as a basis
for variational methods of continuous media models (e.g. Sedov
1968; Malvern 1969). A similar approach was used as the basis for
damage models (e.g. Lyakhovsky & Myasnikov 1985; Valanis 1990;
Hansen & Schreyer 1994; Bart et al. 2000; Bercovici et al. 2001).

3.1 General thermodynamic relations

Following Biot’s theory of poroelasticity (Biot 1941) and damage
rheology (e.g. Lyakhovsky et al. 1997a), the free energy of a unit
volume of a poroelastic solid, F, is a function of its state variables:

F = F(T, εi j , ζ, φ, α). (2)

Although we discuss below only the isothermal case, the temperature
should be tracked as a state variable for the complete thermodynamic
formulation. Since each variable can vary independently of the other
variables, Gibbs relation can be written as (Gibbs 1961)

d F = −SdT + ∂ F

∂εi j
dεi j + ∂ F

∂ζ
dζ + ∂ F

∂φ
dφ + ∂ F

∂α
dα, (3)

where S = − ∂ F
∂T is entropy density (Einstein’s summation conven-

tion is assumed). The elastic strain tensor ε i j is written as the differ-
ence between a total strain tensor, εtot

i j and a strain tensor describing
the inelastic deformation, εin

i j :

εi j = εtot
i j − εin

i j . (4)

The equation for mass conservation of the fluid can be expressed as

dζ

dt
+ ∇i (qi ) = 0, (5)

where qi is the fluid flux with respect to the solid matrix.
The balance equations for the densities of the internal energy, U ,

and entropy, S, have the form (e.g. Malvern 1969; Coussy 1995):

dU

dt
= d

dt
(F + T S) = −ρ f ∇i (qi · h f ) + σi j eij − ∇i Qi , (6)

d S

dt
= −ρf ∇i (qi · s f ) − ∇i

(
Qi

T

)
+ �

T
, � ≥ 0, (7)

where hf is the enthalpy of unit mass of the fluid, which is a function
of the fluid entropy of unit mass, sf , and of the fluid pressure, (dhf =
Tdsf + dp/ρ f ). ρ f is the fluid density, σ i j is the stress tensor, Qi

is the heat flux, � is the local entropy production and the strain rate
tensor eij is a temporal derivative of the total strain tensor

eij = dεtot
i j

dt
. (8)
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The balance eqs (6) and (7) differ from the similar energy and en-
tropy balance equations for elastic media with distributed damage
(Lyakhovsky et al. 1997a) by the divergence term related to the
energy and entropy advection due to pore fluid transport.

The stress tensor and the fluid pressure are defined as (Malvern
1969; Coussy 1995):

σi j = ∂ F

∂εi j
, (9)

p = ∂ F

∂ζ
, (10)

where, it should be emphasized, the inelastic porosity is kept con-
stant in these derivatives. Substituting Gibbs relation (3) into the
energy and entropy balance eqs (6) and (7), using the fluid conser-
vation eq. (5) and the definitions of the stress tensor and the fluid
pressure (9, 10), the local entropy production may be represented as

� = − Qi

T
∇i T + σi j

dεin
i j

dt
− qi∇i p − ∂ F

∂α

dα

dt
− ∂ F

∂φ

dφ

dt
≥ 0. (11)

Each term in this equation represents entropy production due to
a different physical process and can be classified according to its
tensorial rank. Thus in eq. (11): the first term describes entropy
production by heat conduction; the second term is due to viscous
dissipation; the third term is related to the fluid transport process;
and the last two terms are respectively related to internal energy
changes caused by mirocracking and inelastic porosity change. As a
standard approach, we split terms of different tensorial rank. There-
fore, the viscous dissipation term is divided into volumetric and
deviatoric parts. This separation is consistent with the distinction
between shear and bulk viscosities (McKenzie 1984). We now in-
troduce the notation τi j and ε̃i j for the deviatoric stress and strain
tensors, and εkk and σm(σm = − 1

3 σkk) for the volumetric strain and
mean stress. Using this notation, eq. (11) can be rewritten as

� = − Qi

T
∇i T + τi j

d ε̃in
i j

dt
− σm

dεin
kk

dt

− qi∇i p − ∂ F

∂α

dα

dt
− ∂ F

∂φ

dφ

dt
≥ 0. (12)

Each term in eq. (12) may be viewed as a product of a thermodynamic
flux and a thermodynamic force (deGroot & Mazur 1962; Malvern
1969). For example, in the first term the thermodynamic force is the
temperature gradient and the thermodynamic flux is the heat flux.

To complete the formulation we now have to write constitutive
equations relating the thermodynamic fluxes to the thermodynamic
forces. Usually the components of the various fluxes do not de-
pend on all the forces. According to Curie’s theorem, in an isotropic
medium, fluxes and forces of different tensorial rank cannot be cou-
pled (e.g. deGroot & Mazur 1962). Hence, scalar, vectorial and
tensorial terms in eq. (12) represent dissipation processes of dif-
ferent physical natures and, accordingly, should be non-negative
independently of the others. The condition of non-negative local
entropy production when divided into three independent conditions
becomes:

�scalar = −∂ F

∂α

dα

dt
− ∂ F

∂φ

dφ

dt
− σm

dεin
kk

dt
≥ 0, (13)

�vector = − Qi

T
∇i T − 1

ρ f
qi∇i p ≥ 0, (14)

�tensor = τi j

d ε̃in
i j

dt
≥ 0. (15)

A usual assumption of a plastically incompressible matrix means
that an irreversible change in the bulk volume is equal to an inelastic
porosity change. Thus, the time derivative of the trace of the inelastic
strain tensor, εin

kk , is equal to time derivative of the inelastic porosity,
and �scalar can be rewritten as

�scalar = −∂ F

∂α

dα

dt
−

(
∂ F

∂φ
+ σm

)
dφ

dt
≥ 0. (16)

For sufficiently small deviations from equilibrium, a constitu-
tive equation gives the thermodynamic flux as a linear function of
the thermodynamic force for each dissipation (deGroot & Mazur
1962; Malvern 1969; Bear 1972). These phenomenological equa-
tions guarantee the non-negative value of entropy production. Non-
negativity of �vector gives rise to Fourier’s law (17) for the thermal
conduction and Darcy’s law (18) for the fluid transport:

Qi = −χ · ∇i T, (17)

qi = −κ · ∇i p, (18)

where χ and κ are the thermal and hydraulic conductivities, respec-
tively. Non-negativity of �tensor gives rise to Newton’s relation for
viscous flow

τi j = 2ηs

d ε̃in
i j

dt
, (19)

where ηs is the shear viscosity. Similarly, to assure non-negativity of
�scalar, we write the phenomenological equations for the kinetics of
the internal state variables α and φ as a set of two coupled differential
equations:

dφ

dt
= Cφφ

(
∂ F

∂φ
+ σm

)
+ Cφα

∂ F

∂α
,

dα

dt
= Cαφ

(
∂ F

∂φ
+ σm

)
+ Cαα

∂ F

∂α
, (20)

where the matrix of the kinetic coefficients, C, has to satisfy the
following conditions (deGroot & Mazur 1962; Bear 1972):

Cφφ ≤ 0, Cαα ≤ 0, 4 · CφφCαα ≥ (Cφα + Cαφ)2. (21)

Owning to Onsager’s reciprocal relations the matrix of the kinetic
coefficients C is usually taken to be either symmetric or antisym-
metric (Malvern 1969). The kinetic eqs (20) describe the change
in inelastic porosity and, respectively, in terms of derivatives of the
free energy. For full understanding of the kinetic equations and es-
timation of the kinetic coefficients, C, we have to express the free
energy as a function of its state variables.

3.2 Equations of state

Following Biot’s (1941, 1956) formulation, the isothermal free en-
ergy for linear poroelastic media, F, is represented as a sum of the
elastic energy under drained conditions and the poroelastic coupling
term of the saturated medium:

F = Fdr (εi j , α, φ) + 1

2
M · [β I1 − (ζ − φ)]2, (22)

where M and β are the Biot’s modulus and coefficient for porous
media and I 1 = εkk is the first invariant of the elastic strain tensor.
Following Lyakhovsky et al. (1997a), who wrote the elastic energy,
Fdr, for non-linear damaged media, the elastic energy under drained
conditions is written as:

Fdr = λ

2
I 2

1 + µI2 − γ I1

√
I2, (23)
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where I 2 = ε i jε i j is the second invariant of the elastic strain tensor;
λ and µ are the Lame drained moduli; and, γ is the strain coupling
modulus which accounts for the material non-linearity (Lyakhovsky
et al. 1997a). Substituting the free energy (22, 23) into the equations
of state (9, 10), we obtain constitutive relations for the stresses and
fluid pressure under isothermal conditions:

σi j =
(
λ − γ

ξ

)
I1δi j + (2µ − γ ξ)εi j + βM[β I1 − (ζ − φ)]δi j , (24)

p = M[−β I1 + (ζ − φ)], (25)

where ξ is the strain invariant ratio I1/
√

I2. For all deformations
−√

3 ≤ ξ ≤ √
3, where for isotropic compaction ξ = −√

3, for
isotropic dilation ξ = √

3, and for isochoric shear ξ = 0. Eq. (24)
for the total stress may be rewritten in terms of effective stress and
fluid pressure

σi j = σ e
ij − βpδi j , (26)

where the effective stress is:

σ e
ij =

(
λ − γ

ξ

)
I1δi j + (2µ − γ ξ )εi j . (27)

In the present generalization of Biot’s formulation and
Lyakhovsky’s model, the elastic moduli λ, µ and γ are assumed
to depend on the damage variable α and inelastic porosity φ. Agnon
& Lyakhovsky (1995) analysed the connection between the elastic
moduli and α. They assumed constant λ and the following linear
approximations: µ = µ0 + µ1α, γ = γ 1α, with µ0, µ1 and γ 1

constants for each material. The existence of critical strain invari-
ant ratio ξ 0 (Agnon & Lyakhovsky 1995), which corresponds to a
neutral state between weakening (growth in α) and hardening (re-
duction in α) of the medium, reduces the relation for µ to µ =
µ0 + γ 1ξ 0α. ξ 0 was related to the friction angle and it was found
to be negative on the order of unity from a variety of experimen-
tal measurements (Lyakhovsky et al. 1997a; Liu et al. 2001). Here,
we adopt these relations between elastic moduli and the damage
variable α to account for the effect of microcrack concentration on
the elastic properties of the bulk. We also assume that microcracks
do not directly change the fluid energy. Hence, Biot modulus, M ,
and Biot coefficient, β, do not depend on α. On the other hand, the
poroelastic moduli decrease with increase in porosity (e.g. Dvorkin
et al. 1994; Mavko & Mukerji 1995). Viewing the porosity as a con-
centration of roughly spherical inclusions, the elastic properties of
the bulk linearly decrease with increasing φ (e.g. Christensen 1979).
This linear relation is the first order approximation to more general
models for the effective moduli and their dependence on porosity
in poroelastic media (e.g. Dvorkin et al. 1994; Mavko & Mukerji
1995; Hudson 2000). This linear approximation is supported by ex-
periments on sandstone reported by Dvorkin & Nur (1996). Hence,
the elastic moduli are assumed to be proportional to the term (1 −
φ/φ cr), where φ cr is the porosity upper bound in which the material
loses its stiffness. Finally, the effective poroelastic moduli can be
written as:

λ = λ0

(
1 − φ

φcr

)
, M = M0

(
1 − φ

φcr

)
,

µ =
(

1 − φ

φcr

)
(µ0 + ξ0γ1α) , γ =

(
1 − φ

φcr

)
γ1α. (28)

In the following, we have adopted Terzaghi’s assumption (β = 1)
as a useful approximation (see discussion in Nur & Byerlee 1971).
The effective stress then becomes the sum of the total stress and the

fluid pressure. Eqs (24)–(27) reduce to the equations of state devel-
oped by Biot (1941, 1956) for linear poroelastic media in the limit
of zero damage intensity (α = 0. At the same time these equations
reduce to the stress-strain relations derived by Lyakhovsky et al.
(1997a) for damaged elastic media with vanishing fluid pressure
(p = 0).

4 K I N E T I C S O F DA M A G E A N D
I N E L A S T I C P O RO S I T Y

The kinetics of damage and inelastic porosity are functions of the
thermodynamic forces ∂ F/∂α and ∂ F/∂φ, andg (eq. 20). Using
eqs (22), (23) and the constitutive equations for the elastic moduli
(28), ∂ F/∂α and ∂ F/∂φ can be written as:

∂ F

∂φ
= −p + O(ε2),

∂ F

∂α
= −

(
1 − φ

φcr

)
γ1 I2(ξ − ξ0). (29)

Substituting (29) into (20) and the neglecting high order terms in
∂ F/∂φ, the kinetic equations become:

dφ

dt
= Cφφ Pe + Cφα

[
−

(
1 − φ

φcr

)
γ1 I2(ξ − ξ0)

]
, (30a)

dα

dt
= Cαφ Pe + Cαα

[
−

(
1 − φ

φcr

)
γ1 I2(ξ − ξ0)

]
, (30b)

where the effective pressure Pe = − 1
3 σ e

kk . For applications of the
kinetic eqs (30a) and (30b) we seek estimates for the kinetic coeffi-
cients matrix, Cij, in the following subsection.

4.1 Constraints on kinetic coefficients

Useful constraints can be put on the diagonal terms of the kinetic
coefficient matrix (C φφ , C αα). Lyakhovsky et al. (1997a) analysed
damage evolution in crystalline and high-porosity rocks, and found
C αα to be between −0.5/γ 1 and −10/γ 1 1/(Pa s) for unsaturated
rocks. The rate of fracture process in saturated rocks differs from
that in unsaturated rocks, but not in order of magnitude (Dennis &
Atkinson 1982; Masuda 2001). Therefore, C αα in our model is of the
same order of magnitude of C αα found by Lyakhovsky et al. (1997a).
C φφ is the inverse of the bulk viscosity in viscous compaction models
(McKenzie 1984; Fowler 1990), and is estimated to be in the order
of 10−18–10−22 1/(Pa s) for sedimentary basins (Suetnova & Vasseur
2000; Yang 2001). In these models and models of pressure solution
creep (Lahner 1995; Paterson 1995; Fowler & Yang 1999) C φφ is
usually given as a power-law of the porosity (C φφ = Aφm), where the
exponent, m, ranges between one and three for most rocks (Paterson
1995) and A in the order of 10−16–10−22 1/(Pa s).

Constraints on the coupling terms (C φα , C αφ) are less known. We
consider the behaviour of sandstones as a guide to constraining C φα

and C αφ . Triaxial compression experiments of sandstones (Zhang
et al. 1990; Wong et al. 1997) have shown that acoustic emission, or
damage increase, related to grain crushing occurs at relatively high
effective pressure. Since the second term in damage kinetic eq. (30b)
is negative under high pressures, corresponding to material recovery
(healing), this observation of grain crushing demands positive C αφ .
At the same time, grain crushing leads to significant reduction of
the inelastic porosity, corresponding to a negative value of C φα .
This entails that the matrix of kinetic coefficients be antisymmetric
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(Malvern 1969), and conditions (21) reduce to

Cφφ ≤ 0, Cαα ≤ 0, Cφα = −Cαφ. (31)

Grain crushing was observed in isotropic pressing experiments
only in high-porosity rocks under high effective pressures (Zhang
et al. 1990). The first term in the damage evolution eq. (30b) should
overcome the negative value of the second term at high effective
pressures and high porosities. Under isotropic pressing the rate of
the second term in (30b) is proportional to the square of the effective
pressure. Hence, we choose C αφ to be a power-law of the porosity
and effective pressure (Cαφ = Dφñ Pn

e ), and this leads to a rate of
damage increase proportional to P (n+1)

e with n greater than unity.
Various power laws in the effective pressure are frequently encoun-
tered in related formulations of granular mechanics (e.g. Biot 1973)
and dislocation creep (e.g. Poirier 1985). Eq. (30b) describes compe-
tition between two terms; the first term is dominant at high pressures
and the second term is dominant under relatively low pressures. The
competition between damage increase due to stress concentration at
the grain contacts (first term in (30b) and damage decrease due to
healing (second term in 30b) enables definition of a critical effective
pressure, Pcr

e , from the condition:

Dφ ñ
(
Pcr

e

)n+1 + Cαα

[(
1 − φ

φcr

)
γ1 I2

(√
3 + ξ0

)]
= 0. (32)

This pressure corresponds to the onset of damage for isotropic press-
ing. For φ /φ cr � 1 and I 2 = (Pcr

e /K )2 (K is the bulk modulus)
eq. (32) leads to an expression for the critical effective pressure:

Pcr
e ≈


−Cααγ1

(√
3 + ξ0

)
K 2 Dφñ




1
n−1

(33)

or, for experimentally determined critical effective pressure, to the
estimation of the kinetic coefficient, D:

D ≈
−Cααγ1

(√
3 + ξ0

)
K 2φñ

(
Pcr

e

)1−n

. (34)

Theoretical formulation based on the Hertzian contact theory
(Zhang et al. 1990) predicts that the critical effective pressure for a
given grain size increases proportionally to the power of the poros-
ity, i.e. Pcr

e ∝ φ−3/2. Experimental data of the critical pressure in
various sandstones (Zhang et al. 1990; Wong et al. 1997) show rea-
sonable agreement with this theoretical prediction. By inspection of
the power dependence predicted by the Hertzian contact theory ver-
sus eq. (33), we note that ñ = 3

2 (n − 1). Finally, taking into account
all these conditions, the kinetic eqs (30a) and (30b) can be rewritten
as

dφ

dt
= −Aφm Pe + D

(
1 − φ

φcr

)
φ3(n−1)/2 Pn

e γ1 I2(ξ − ξ0), (35a)

dα

dt
= Dφ3(n−1)/2 Pn+1

e + C

(
1 − φ

φcr

)
γ1 I2(ξ − ξ0), (35b)

where m ranges between one and three. A is in the order of 10−16–
10−22 1/(Pa s) depending on the power m, and therefore is negligibly
small for laboratory timescale. C is in the order of 0.5/γ 1 to 10/γ 1

1/(Pa s). D and n will be constrained in the next subsection from the
analysis of the yield curve of sandstones.

4.2 Yielding of porous rocks

We associate yielding (termed first yielding occasionally) with the
onset of damage. The stress-strain relation becomes non-linear when

the modulus γ is greater then zero (eq. 24). Since γ is proportional
to the damage variable α, the stress-strain relation becomes non-
linear upon the onset of damage. The calculated yield curve for
damageable poroelastic rock, defined as the locus of onset of dam-
age, is shown in Fig. 1. The shape of the curve is determined by
the competition between the first and second terms in the equation
for damage evolution (35b). For low effective pressures the second
term is dominant, causing a positive slope of the curve, whereas for
high effective pressures the first term becomes dominant, causing a
negative slope. The transition from positive to negative values of the
slope is determined by the ratio of constants, D/C, and the power, n,
in eq. (35b). Increase of the ratio, D/C, causes the yield cap (negative
values of the slope) to appear at lower effective pressure, whereas
the increase of n results in a steeper yield cap.

The ratio D/C and the power n can be estimated by comparing
the theoretical yield stress with experimentally observed data. The
measured values of yield stress for Berea sandstone samples (mark-
ers in Fig. 1) from Bernabe & Brace (1990), Wong et al. (1997)
and Baud et al. (2000) show significant scattering between data sets
reported by different authors. Thus, the calculated yield curve can
fit only one of the presented data sets. Fig. 1 demonstrates consid-
erable agreement between the measured values of yield stress for
Berea sandstone samples reported by Wong et al. (1997) and the
theoretical curve for D/C = 3.5 × 10−7 (MPa)−n and n = 2. Liu
et al. (2001) and Hamiel et al. (2004) estimated that C = 3.2 ×
10−4 MPa−1 s−1 for Berea sandstone. This value and our estimation
for the ratio D/C, gives a value of D = 1.1 × 10−10 MPa−3 s−1

for Berea sandstone. In these calculations we also used the values
λ0 = 8.8 × 109 Pa, µ0 = 1.5 × 1010 Pa, ξ 0 = −1.19 estimated by
Liu et al. (2001) and Hamiel et al. (in prep.) for Berea sandstone,
and inelastic porosity φ = 0.2. These values were also used for the
simulations presented in the next section (Figs 3, 6 and 7).

5 M O D E L A P P L I C AT I O N S

5.1 Modes of deformation: from brittle
failure to cataclastic flow

Previous damage rheology models (e.g. Lyakhovsky et al. 1997a)
account for material weakening under high deviatoric stresses rel-
ative to confining pressures, and healing at high pressures and low
deviatoric stresses. Agnon & Lyakhovsky (1995) introduced a crit-
ical strain invariant ratio, ξ 0, corresponding to the transition from
material weakening to healing, and related its value to the friction
angle of low-porosity rocks. Lyakhovsky et al. (1997a) show that
the second term in the equation for damage evolution (35b) con-
tributes to localization of the damage for ξ > ξ 0. Fig. 2(a) shows
schematically the yield stress or onset of damage for brittle rock only
(Lyakhovsky et al. 1997a), defined by the curve ξ = ξ 0. Fig. 2(a) also
shows the field of degradation (dα/dt > 0) and the field of healing
(dα/dt < 0). Here, the presence of inelastic porosity and the com-
petition between the first and the second terms in (35b) shifts the
transition from material weakening to healing of the critical strain
invariant ratio to lower values. Now material weakening starts at
ξ = ξ ∗ defined by:

ξ ∗ = ξ0 − Dφ3(n−1)/2 Pn+1
e

C(1 − φ/φcr)γ1 I2
. (36)

The curve ξ = ξ ∗ that is consistent with the yield curve in our model
is shown schematically in Fig. 2(b) (heavy line). Since A (35a) is
usually negligibly small for laboratory timescale, the transition from
inelastic compaction (dφ/dt < 0) to inelastic dilation (dφ/dt > 0)
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Figure 2. (a) Schematic yield curve of low-porosity brittle rocks. The curves denote the onset of damage at ξ = ξ 0 (Lyakhovsky et al. 1997a). Degradation
(dα/dt > 0) occurs whenever ξ > ξ 0 and healing (dα/dt < 0) when ξ < ξ 0. (b) Schematic yield curve (ξ = ξ∗) and stability fields of high-porosity rocks
in the present model. Three stability fields in respect to damage and inelastic porosity evolution are shown: degradation and inelastic dilation (dotted area);
degradation and inelastic compaction (stippled area); and, healing and inelastic compaction. See Fig. 1 for some experimental data.

occurs at ξ = ξ 0 (35a). Fig. 2(b) shows three stability fields in re-
spect of damage and inelastic porosity evolution: degradation and
inelastic dilation at relatively low effective pressures and high dif-
ferential stresses; degradation and inelastic compaction at relatively
high effective pressures; and healing and inelastic compaction at
relatively low effective pressures and low differential stresses. As
we show below in this section, the transition from inelastic dilation
to inelastic compaction is related to the transition from brittle failure
to cataclastic flow.

The total volumetric change is determined by the sum of the elas-
tic and inelastic volumetric change. Since the matrix was assumed
to be plastically incompressible, the total volumetric change, δV /V ,
can be written as

δV

V
= I1 + δ φ. (37)

where δφ is the change in the inelastic porosity. The transition be-
tween dilation and compaction occurs when I 1 = −δ φ, or in terms
of the strain invariant ratio ξ = −δ φ/I 2. Fig. 3 shows drained sim-
ulations of the differential stress versus δV /V from initial condition
of isotropic compression. Dilatancy is obtained under low confining
pressure simulations (Fig. 3a) and compaction under high confining
pressures (Fig. 3b). Fig. 3 also shows the plastic behaviour of the
stress-strain relation under high effective pressure. The theoretical
predictions in Fig. 3 are in qualitative agreement with experimen-
tal observations in sandstones (Menendez et al. 1996; Wong et al.
1997; Wong & Zhu 1999).

Triaxial compression tests on sandstones (Menendez et al. 1996;
Wong et al. 1997) show three main modes of deformation: cata-
clastic flow at high effective pressures; compacting shear bands at
lower effective pressures; and dilating shear bands at lowest effective
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Figure 3. Calculated curves of differential stress versus total volumetric strain change, with initial conditions of isotropic pressing, under triaxial compression
simulations. (a) Curves at relatively low effective confining pressure (σ ef

22 = σ ef
33 = 5, 50 MPa), showing dilatancy. (b) Curves at relatively high effective

confining pressure (300, 350 MPa), showing shear-enhanced compaction.

pressures. Fig. 4 schematically shows three different scenarios of
material evolution in (α, ξ ) coordinates, corresponding to the three
modes of deformation observed in laboratory experiments. All
three paths in Fig. 4 start with isotropic compression (ξ = −√

3),
analogous to most triaxial compression experiments. Path (I) rep-
resents deformation at high effective pressures. During path (I),
while increasing the differential stress, ξ exceeds ξ ∗ causing on-
set of damage. As a result of the high effective pressure ξ will
not cross ξ 0, causing only non-localized damage. Damage in this
path is accompanied with compaction and plastic behaviour of the
stress-strain relation (Fig. 3b). Path (I) corresponds to the experi-
mentally observed cataclastic flow (Menendez et al. 1996; Wong
et al. 1997). Paths (II) and (III) represent deformation at interme-
diate and low effective pressures respectively. At lower effective
pressures than in path (I) ξ will exceed ξ 0 before failure causing
localized damage to develop (paths (II) and (III)). For relatively
intermediate effective pressures the localized damage is accompa-
nied by compaction (path (II)), corresponding to compacting shear
bands (Menendez et al. 1996; Wong et al. 1997). For low effec-
tive pressures failure is preceded first by compaction followed by
dilatancy (path (III) in Fig. 4, see also Fig. 3a). Path (III) corre-
sponds to dilating shear bands observed in laboratory experiments
under low effective pressures (Menendez et al. 1996; Wong et al.
1997).

5.2 Undrained poroelastic response

Our model predicts that for undrained response the fluid pressure
depends on the damage intensity (α). Similarly to recent experi-
mental results reported by Lockner & Stanchits (2002), we examine
the change of fluid pressure under undrained conditions at differ-
ent deviatoric stresses. We present simulations based on our model
for triaxial loading (σ 2 = σ 3). During these simulations fluid vol-
ume content, ζ , was set constant to mimic undrained conditions.
Fig. 5 shows the measured poroelastic coefficients B, η from eq. (1)
for Navajo sandstone (Lockner & Stanchits 2002) compared with
the calculated values for different damage intensities and different
values of τm(τm = 1

2 (σ1 − σ3)). Fig. 5 reveals that Skempton coef-
ficient, B, in our model is about constant or slightly increases with
shear stress and damage intensity. Unlike B, | η | strongly depends
on the shear stress and on damage, increasing with both τm and α.
Fig. 5 demonstrates quantitative agreement between the measured
values of B and η for Navajo sandstone samples (Lockner & Stan-
chits 2002) and the values calculated for α = 0.2. Fig. 6 shows the
change in the fluid pressure, from an initial value of 10 MPa, as
a function of τm for a given damage intensity (α). In these simu-
lations the mean stress was kept constant (σ 1 + 2σ 3 = constant),
thus, fluid pressure changes according to the change of η. For a
given α, | η | increases with τm and therefore fluid pressure decreases
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Figure 4. Stability fields and modes of deformation. Thick curve represents maximum value of damage variable (α) as a function of the strain invariant ratio
ξ . The maximum value of α was calculated using conditions for loss of convexity (see also eqs 14 and 15 in Lyakhovsky et al. 1997a). The range −√

3 <

ξ < ξ 0 corresponds to non-localized damage distribution, and the range
√

3 > ξ > ξ 0 corresponds to the appearance of localized damage, where onset of
damage occurs at ξ = ξ∗(ξ∗ varies according to eq. 36). The transition from compaction to dilation occurs between ξ 0 and ξ = 0, depending on the loading
and material properties. Three different typical paths are illustrated: (I) deformation accompanied by compaction and non-localized damage, corresponding to
cataclastic flow; (II) deformation accompanied by compaction and localized damage, corresponding to compacting shear bands; (III) deformation accompanied
by dilation and localized damage, corresponding to dilating shear bands. The stippled area represented an unstable post-failure state.

Figure 5. Measured poroelastic coefficients B, η from eq. (1) for Navajo sandstone (Lockner & Stanchits 2002) compared with the calculated values for
different damage intensity and different values of τm = 1

2 (σ1 − σ3). α = 0.2 gives quantitative agreement between the measured and the calculated values of
B and η for Navajo sandstone.

concomitantly. This reduction in fluid pressure occurs mainly by di-
latancy of fractures, represented by the non-linear term in the elastic
energy (eq. 23, see also eq. 27). Therefore, at α = 0 fluid pressure
remains constant and the higher α, the more drastic the reduction
in p.

Evolution of fluid pressure during undrained triaxial compression
simulations, taking into account the kinetics of damage and poros-
ity, is illustrated in Fig. 7. In these simulations confining pressure

was kept constant (σ 2 = σ 3 = constant) and σ 1 was ramped with
a constant loading rate of 0.1 MPa s−1, which approximately corre-
sponds to a strain rate of 10−5 s−1 in the linear elastic region. During
the simulation the fluid pressure first increases according to predic-
tions of linear poroelasticity (Fig. 7a). Later, after onset of damage,
increase in the differential stress causes a decrease in the fluid pres-
sure. Since B does not change much with damage (Fig. 5), the de-
crease in the fluid pressure is mostly caused by the damage-related
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Figure 6. Calculated curves of fluid pressure verses τm = 1
2 (σ1 − σ3) at constant mean stress (dσ 1 = −2dσ 3) under undrained conditions. Each line represents

a different value of the damage variable (α), where the line α = 0 corresponds to linear poroelasticity. In this calculation dp = η dτm (after Lockner & Stanchits
2002), where p is fluid pressure. The initial value of fluid pressure is 10 MPa, and mean stress was kept at 50 MPa.

Figure 7. (a) Fluid pressure evolution, during triaxial compression simulations, under undrained conditions at a loading rate of 0.1 MPa s−1 for two different
confining pressures (20, 50 MPa). Straight line corresponds to the evolution of fluid pressure according to linear poroelasticity. (b) Damage evolution of the
two simulations in (a).

increase in | η |. This increase corresponds to dilatancy hardening
in undrained triaxial tests. Similar increase and following decrease
of fluid pressure during triaxial compression tests under undrained
conditions was observed in laboratory experiments on porous rocks
(e.g. Paterson 1978).

6 D I S C U S S I O N

We have presented here a model for coupled evolution of damage and
porosity in poroelastic media, based on thermodynamic principles
and experimental observations. The model indicates the importance
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of the interaction between damage and fluid flow. Our formulation
combines the classical poroelasticity model of Biot (1941) together
with the damage rheology of Lyakhovsky et al. (1997a). Our com-
bined model provides a framework to explore kinetic processes in
poroelastic rocks and can be applied to a variety of geological prob-
lems concerning damage evolution and fluid flow.

The model was applied to failure in high-porosity rocks. We anal-
ysed the yield curve of sandstones, and determined the values of the
kinetic coefficients in the equation of damage evolution (35b) for
Berea sandstone. A significant advantage of our model is the ability
to mimic the entire yield curve, positive and negative slopes, by a sin-
gle formulation. In our model the transition from positive to negative
values in the yield curve is determined by the competition between
two thermodynamic forces (35): the force caused by damage change
and the force caused by inelastic porosity change. For low effect-
ive pressures the force caused by damage change dominates (posi-
tive slope of the curve), whereas for high effective pressure the force
caused by inelastic porosity change dominates (negative slope).

Localization/delocalization are also determined by the compe-
tition between the forces caused by the changes in damage and
inelastic porosity. It was shown by Lyakhovsky et al. (1997a) that
the thermodynamic force caused by damage change contributes to
localization of the damage for ξ > ξ 0. Localization will occur only if
the latter force dominates, and transition to non-localized cataclastic
flow will occur if the force caused by inelastic porosity variation,
dominates. Our model reproduces experimental observations on the
modes of failure in sandstones (Menendez et al. 1996; Wong et al.
1997; Baud et al. 2000), predicting the appearance of three modes of
failure: cataclastic flow, compacting shear bands and dilating shear
bands.

Our model also displays the experimentally observed connection
between fluid pressure and deviatoric stresses. Moreover, the model
highlights the role of damage evolution in the variation of fluid
pressure. Under undrained conditions, fluid pressure varies due to
two terms depending on mean stress and shear stress (eq. 1). Rising
mean stress increases fluid pressure (according to Skempton coeffi-
cient B) and rising shear stress (at constant mean stress) decreases
fluid pressure. In triaxial compression tests, where increasing the dif-
ferential stress increases both the mean stress and the shear stress,
fluid pressure first increases and then decreases, after the onset of
damage. Our predictions on fluid pressure were found to be in quan-
titative agreement with undrained experiments on sandstones with
constant damage (Fig. 5), as well as with kinetic processes when
dilation was caused by microcracks (Fig. 7). The model explains
dilatancy hardening observed in undrained experiments (Lockner
& Stanchits 2002), suggesting that dilatancy hardening should be
taken into consideration in predictions of Coulomb failure stress of
faults.

The evolution of the porosity and the damage variable in our
model resembles the evolution of the porosity and the state variable
in some models of rate- and state-dependent friction (Sleep 1995;
Segall & Rice 1995). In the latter models the evolution of the in-
elastic porosity is assumed to be analogous to the evolution of the
frictional state variable. In our model, thermodynamic principles
lead us to an antisymmetric matrix for the evolution of the inelastic
porosity and the damage variable (eqs 30a and 30b), and therefore
to a similar evolution for inelastic porosity and the damage variable.
In addition, here like in Sleep’s (1995) model, the evolution of the
damage variable (or the state variable in Sleep 1995) is controlled
by two terms: one related to ductile compaction and one to crack
creation. These considerations indicate that there is a connection
between our damage variable and the state variable, and that the

similar evolution of the state variable and the inelastic porosity has
a thermodynamic basis.
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